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ABSTRACT

In this paper, a statistical framework for semantic parsing is
described. The statistical model uses two information sources
to disambiguate between rules: rule weights that capture ver-
tical relationships in the parse tree, and concept � -grams that
capture horizontal relationships. Rule design consists of sim-
ple local mapping rules that non-experts can write, and the
rules are implemented as weighted finite state transducers.
A general parser for context free grammars is implemented
using a finite state machine library. Semantic decoding is im-
plemented by recursively composing the rule transducer with
the word-graph automaton produced from the speech recog-
nizer. Detailed metrics for evaluating semantic parse accuracy
are proposed. The parser is evaluated on the ATIS travel task
with resulting precision and recall rates of over 95%. The
proposed finite state transducer formulation allows the incor-
poration of rules and probabilities in a unified framework and
the straightforward combination of acoustic, language, and
understanding models.

1. INTRODUCTION

Current speech understanding systems either take a generative ap-
proach or a fully statistical approach. The former method suffers
from lack of coverage and requires expert knowledge to design
the grammars, while the latter requires a large amount of labeled
training data. In this paper, a speech understanding system that
combines the rich hierarchical representation of a parse tree with
the power and robustness of statistical modeling is presented. Our
goal is to build an understanding module that requires a small
amount of training data and a grammar designer that is not neces-
sarily an expert linguist.

There has been a lot of research effort in syntactic parsing (see
[2, 5] for a review). Formal evaluation of these parsing algorithms
(typically on the Penn Treebank) can also be found in the literature.
Work on semantic parsing, however, is less formal and harder to
evaluate due to lack of annotated corpora. Also semantic and
syntactic parsing have different goals. In semantic parsing, the
goal is to extract relevant semantic fragments, not necessarily to
obtain a full parse of the sentence.

In spoken utterances, robust semantic parsing is necessary be-
cause spontaneous speech may contain disfluencies and ungram-
matical sentences. Robust parsing for spoken language under-
standing has been a topic of great interest in recent years [11, 7, 12].
A survey of the different systems built for the ATIS task can be
found in [4], which describes some of the previous work done on
robust parsing. Most systems required a robust parser as a backup
even if they tried to use a global syntactic parser. Many systems
also used a combination of hand-codedrules and machine learning
(including probabilities).

We propose using finite state transducers to encode all hand-
coded rules and probabilities in a consistent fashion for robust

parsing. Finite state machines have been used extensively in nat-
ural language processing and speech recognition [6]. Recently,
finite state machines have been successfullyapplied to the problem
of parsing using context free grammars [10, 3]. In this paper, we
concentrate on the problem of statistical semantic parsing using re-
cursive application of weighted finite state transducers. Semantic
decoding is based on the recursive composition of the rule trans-
ducer with the word-graph produced from the speech recognizer’s
output. The recursion is terminated when the process reaches a
fixed point, i.e., the output of the composition remains unchanged
and no new parses are added. After convergence is reached, the
best semantic path is used to obtain the full parse tree by back-
tracking. The end result is a hierarchical semantic representation
that can be easily encoded into a semantic frame or transformed to
a flat application frame. Note that the proposed parser can operate
on any context-free grammar and can also be applied to syntactic
parsing.

2. STATISTICAL MODELS FOR SEMANTIC PARSE
TREES

In statistical syntactic parsing, probabilities are assigned to each
rule to help disambiguate between the possible parse trees [5].
Typically, rules are assumed to fire independently of each other.
More complex models also allow for lexical dependencies across
or within rules [1]. In this section, two models are presented for
computing the probability of a semantic tree or branch: a “product
of rule probability” model, and a concept � -gram model. The first
model describes the vertical dependencies in the tree, while the
second describes horizontal dependencies.

In Fig. 1(a) an example parse tree is shown for the sentence
“D E F.” Let this parse tree be denoted by � . The “product of
rules” model � 1 simply computes the probability of the tree as the
product of the probabilities of all the rules used to expand each
node in the parse tree:��� �	� � 1 
�� ���� 
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where each fraction represents the probability of a rule in the tree,
and rules are assumed to fire independently of each other. Due to
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Figure 1: Examples of Semantic Parse Trees



the rule independence assumption, this model does not take into
account dependencies across rules.

A concept and word � -gram model � 2 can be used to model
horizontal dependencies within and across rules. This model can
be used in addition to � 1 since it captures dependencies not mod-
eled in the “product of rule” model. Independence is assumed
between different levels (horizontal slices) of the tree, and � -
grams are used to compute the probability at each tree level. The
probability of the tree for the example in Fig. 1(a) using the model� 2 is estimated as��� �	� � 2 
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where
���� 
 , ������� 
 and

�������	� 
 are the probabilities at the
root, middle and leaf level of the tree, and a trigram model is used
to approximate each probability.

Model � 1 models the vertical dependencies in the tree. Model� 2 models horizontal dependencies and provides complementary
information when trying to disambiguate between parse trees. For
example, consider the case in Fig. 1(b) where a time and a date are
specified. Assume that based on rule probabilities (from model� 1) we are confident that “date” is a departure date (dept date);
“time,” however, could be either a departure or an arrival time.
In this case, the highly probable dept date, dept time bigram can
effectively resolve the ambiguity.

The tree probabilities produced by models � 1 and � 2 can be
assumed to be two independent sources of information and can be
combined using exponential weights as follows:��� �	� � 
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The exponential weights � 1 and � 2 can be computed so that error
is minimized on held-out data. The combined statistical model �
is then used for semantic parsing.

2.1. A greedy algorithm

There are cases where there is little training data or a detailed
semantic annotation of the corpus is prohibitively expensive. In
those cases, a heuristic model can be used to resolve parse am-
biguities and compute a crude estimate of

����	���	� �	� � � 1 
 .
Specifically, rule weights can be hardcoded to values that guaran-
tee greedy behavior, i.e., give preference to rules that transform
longer sequences of words and concepts. One simple implemen-
tation of this greedy behavior assigns log probabilities to rules that
are proportional to the difference in the number of labels before
and after the rule is fired, e.g., for the

 � ���
rule, two labels���

get transformed to a single label


, so the rule has a log
probability proportional to one. Note that for single to single label
rules, e.g.,

��� �
, some small (non-zero) log probability should

be assignedto guarantee that the rules will fire. This simple greedy
model can be combined with the � -gram model � 2 according to
Eq. (3) to improve performance.

3. RULE DESIGN AND IMPLEMENTATION

Writing the rules for the semantic grammars is a process that often
is both time consuming and requires expert linguistic knowledge.
Our goal is to simplify this process by adding rule and � -gram
concept probabilities to the semantic decoder so that non-experts
can write simple and intuitive local rules without using formal lin-
guistic knowledge. Indeed, probabilistic parsing is more forgiving
to ambiguous or general semantic definitions because rule and � -
gram probabilities can frequently resolve ambiguity efficiently.

Manual semantic labeling of the corpus can be very expen-
sive and may be inconsistent. In addition, minor rule modifi-
cations can significantly change the desired annotation of the
corpus. Instead of semantic labeling of the corpus, an iterative
process for selecting the semantic rules was followed to speed

up the design. First, the terminal concepts such as cities, ho-
tels, airports, were automatically extracted from the database.
Spoken form variations were manually added for common ter-
minal values, e.g., ‘Los Angeles’ or ‘L A’. Next, � -gram counts
were computed for each terminal concept from the training set.
Using a graphical user interface, word and terminal combina-
tions were selected from the � -gram list and mapped to higher
level concepts. Then the semantic parser was run using the
newly selected rules and � -gram counts were computed anew.
This bottom-up rule design process continued until all unam-
biguous terminals were mapped to higher level concepts. In a
third (optional) step, rules for ambiguous terminals were writ-
ten. Typical rules for departure city, date and time respectively
include: “ � FROMCITY � � FROM � CITY � ,” “ � DATE �� � month ��� daynumbers � ,” “ � TIME � � � TIMESPEC �� TIME � ” (where � TIMESPEC � is a relative time specifier,
e.g., ‘before’). If no training data are available, the rules can be
manually coded using regular expressions.

Rules are implemented as a finite state transducer (FST) using
the AT&T Bell Labs Finite State Machine (FSM) library [9]. To
simplify the identification of rule boundaries, segmentation labels
are added. For example, if a rule has fewer labels in the left
side than the right side, an epsilon-equivalent segmentation label
(denoted as � SGM � in Fig. 2) is added to the rule implementation,
e.g., “A

�
B C” is implemented as “A � SGM � � B C” (label A is

always left-aligned). Weights are assigned to each rule according
to (conditional) rule probabilities as discussed in Section 2. The
rule transducer �
	 is obtained by applying the FSM closure and
taking the union among all rule transducers. The � -gram model�
� (see Eq. (2)) is also implemented using the FSM library as
a weighted finite state automaton. Finally, the rule transducer� used for parsing is obtained as the composition of the rule
transducer and the � -gram automaton, i.e., � � ��	��� � . 1

4. SEMANTIC DECODING

Assume that a rule transducer � has been constructed that maps
sequences of words or concepts to a sequence of concepts, and
a weighted finite state automaton � that encodes all possible
word sequences (within a pruning beam) has been produced by
the acoustic decoder. Semantic decoding is then achieved by
recursive composition of the wordgraph automaton � with the
rule transducer � as follows:��� � � � ���� 
 �� 
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The recursion terminates when a fixed point
���

is reached and
further composition with � adds no new semantic parses , i.e.,
when
���

and
�����

1 (after removing the arc costs) are equivalent
transducers. In practice, checking the equivalence of the FSTs
can be computationally expensive. In addition, if beam pruning
is applied to the semantic paths during composition

���
and
�����

1

might no longer be equivalent. A simple and efficient termination
condition is when a fixed point is reached in the best path

���
of
���

, i.e., the best paths of
���

and
�����

1 are identical2. As an
example, in Fig. 2(a),

�
5 is shown for an ATIS sentence“DALLAS

TO HOUSTON AFTER TWELVE OH ONE A M” (for simplicity
no weights or input labels are shown).

Once a fixed point is found at iteration  and the best path�
� � bestpath
����� 
 proj 2 has been identified, the full semantic

parse tree can be obtained recursively as follows:
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1The log probabilities in the FSMs are multiplied by their respective
stream weights & 1 and & 2 in Eq. (3) before the composition is performed.

2Note that this termination condition only makes sense for weighted
rule transducers.



where � denotes the intersection of two acceptors, ‘nocost’ re-
moves all weights from the FSM, ‘proj 1’ or ‘proj 2’ denotes pro-
jection of the FST input or ouput to an FSA. � �"! 1 in Eq. (5)
contains all paths from iteration ��� 1 that could have produced
the best path

�
�
at iteration � , according to the rules in � . The

best path at iteration ��� 1 can be obtained from � �"! 1 as follows:

�
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where ‘bestpath’ searches for the path with the smallest cost (or
highest probability) through the FSM using the Viterbi decoding
algorithm. By iteratively applying Equations (5) and (6), the best
path is obtained at each iteration as shown in Fig. 2(b). The parse
tree shown in Table 1 can be easily derived from the figure using
the rule segmentation marks.

5. EVALUATION

One important issue is how to evaluate the parser. A popular set
of measures are the PARSEVAL measures which include the mea-
sures of precision and recall [5]. The parse tree for the candidate
parse and for the correct parse are first broken down into brackets
which denote the non-terminal nodes and the ranges they span.

Precision measures how many brackets in the candidate parse
match those in the correct tree, whereas recall measures how
many of the brackets in the correct tree are in the candidate parse.
Specifically, let � be the number of matching brackets between
the candidate and correct parse. Precision is the ratio of � to the
number of brackets in the candidate parse. Recall is the ratio of
� to the number of brackets in the correct tree.

As an example, Tables 1 and 2 show the correct and
an erroneous candidate parse of the sentence “DALLAS0 TO1

HOUSTON2 AFTER3 TWELVE4 OH5 ONE6 A7 M9” and the
corresponding brackets. There are 11 brackets in the correct parse
and 9 brackets in the erroneous parse, of which 6 brackets match.
Thus the precision is 6 � 9 (66.7%) and the recall is 6 � 11 (54.5%).

DALLAS TO HOUSTON AFTER TWELVE OH ONE A M
{

:FROMCITY{
:CITY "DALLAS"

}
:TOCITY{

:CITY "HOUSTON"
}
:FROMTIME{

:TIME{
:TIMESPEC "AFTER"
:TIME{
:HOUR "TWELVE"
:MINUTE "OH ONE"
:AMPM "A M"

}
}

}
}

Brackets: FROMCITY(0,0) CITY(0,0) TOCITY(2,2) CITY(2,2)
FROMTIME(3,8) TIME(3,8) TIMESPEC(3,3) TIME(4,6) HOUR(4,4)
MINUTE(5,6) AMPM(7,8)

Table 1: Correct parse tree.

Besides measuring the precision and recall, it is also helpful
to classify the errors as substitution, segmentation, deletion, or
insertion errors. We define a substitution error as one where, after
all the matched brackets have been taken out, there exists a pair
of correct and candidate brackets with the exact same range but
different non-terminal labels. In the example, we did not have any
substitution error; if there had been a bracket TIME(4,6) in the

DALLAS TO HOUSTON AFTER TWELVE OH ONE A M
{

:FROMCITY{
:CITY "DALLAS"

}
:TOCITY{

:CITY "HOUSTON"
}
:TIMESPEC "AFTER"
:FLIGHTNO "TWELVE OH"
:TIME{

:HOUR "ONE"
:AMPM "A M"

}
}

Brackets: FROMCITY(0,0) CITY(0,0) TOCITY(2,2) CITY(2,2) TIME-
SPEC(3,3) FLIGHTNO(4,5) TIME(6,8) HOUR(6,6) AMPM(7,8)

Table 2: Parse tree produced when “ � MINUTE � � � digit �� digit � ” is deleted from the parser’s rules.

correct and FLIGHTNO(4,6) in the candidate parse, this would
have qualified as a substitution error.

A segmentation error is defined to be one where the candidate
and correct parses have the same non-terminal label with different
but overlapping ranges. In the example, there is one segmenta-
tion error: TIME(3,8)

�
TIME(6,8). After the correct matches,

substitution errors, and segmentation errors are taken out, what
remain are the insertion and deletion errors. In the example, there
are 4 deletion errors: FROMTIME(3,8), TIME(4,6), HOUR(4,4),
and MINUTE(5,6) and 2 insertion errors: FLIGHTNO(4,5) and
HOUR(6,6). Each of these types of errors can be expressed as
an error rate, a percentage of the total number of brackets in the
correct parses for the whole test set.

6. EXPERIMENTAL RESULTS

The parse results for the 1993 ATIS category A test set are summa-
rized in Table 3. A bigram model and the simple greedy algorithm
introduced in Section 2.1 were used to train the rule transducer.
Bigrams were trained from the parsed ATIS training corpus (four
iterations, unsupervised training). The ATIS category A sentences
are independentutterances that did not rely on context information
from previous utterances. There are a total of 389 sentences in the
1993 test set, and the correct transcribed sentences were used as
inputs to the parser. As shown in Table 3, the precision and recall
rates were over 95%. These results were based on text only and
not the output of the recognizer.

The error rates shown in the table were computed as a fraction
of the total number of brackets (2475) in the correct parses for the
entire test set. Specifically, there were a total of 7 substitution,
12 segmentation, 95 insertion, and 84 deletion errors. The parser
has also been used successfully in the Bell Labs travel reservation
system [8].

7. CONCLUSIONS

We have proposed a statistical semantic parser that combines the
advantages of the generative and statistical approaches to speech

Precision 95.4%
Recall 95.8%
Substitution Error 0.28%
Segmentation Error 0.48%
Insertion Error 3.84%
Deletion Error 3.39%

Table 3: Parser results for the ATIS 1993 category A sentences.
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Figure 2: (a) A costless projection of the resulting finite state transducer when a fixed point is reached; recursive composition is
performed on the sentence “DALLAS TO HOUSTON AFTER TWELVE OH ONE A M”, and (b) Backtracking from the best path: the
costless union of the best path at each iteration is shown for the same sentence.

understanding, i.e., the rich hierarchical representation of a parse
tree with the power and robustness of statistical modeling. Rules
from all knowledgesources and probabilities estimated from train-
ing data can be encoded in a consistent framework with finite state
transducers. By using finite state machine technology for rule
design and decoding, the understanding module has improved
efficiency and extensibility, and is easy to integrate with other
modules. For example, acoustic, language, and understanding
scores can also be easily combined in a word- and concept-graph.
Guidelines for designing and implementing rules using finite state
transducers were described. The parser was evaluated on a travel
reservation application, achieving precision and recall rates of over
95%.
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