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ABSTRACT

A speech understanding system typically includes a natural lan-
guage understanding module that defines concepts, i.e., groups of
semantically related words. It is a challenge to build a set of con-
cepts for a new domain for which prior knowledge and training
data are limited. In our work, concepts are induced automatically
from unannotated training data by grouping semantically similar
words and phrases together into concept classes. Four context-
dependent similarity metrics are proposed and their performance
for auto-inducing concepts is evaluated. Two of these metrics are
based on the Kullback-Leibler (KL) distance measure, a third is
the Manhattan norm, and the fourth is the vector product (VP)
similarity measure. The KL and VP metrics consistently under-
perform the other metrics on the four tasks investigated: movie in-
formation, a children’s game, travel reservations, and Wall Street
Journal news articles. Correct concept classification rates are up to
90% for the movie task.

1. INTRODUCTION

A developer can generate groups of semantically related words
manually, but this is a time-consuming process [1, 2]. Some
classes, such as those consisting of lists of names, are easy to
specify, whereas others require a deeper understanding of lan-
guage structure. Recently, several studies have shown that statisti-
cal processing techniques can be used to semi-automatically gen-
erate concepts from unannotated corpora [3, 4, 5, 6] for a single
domain because semantically similar phrases often share similar
syntactic environments for limited domains [7, 8, 9]. An itera-
tive procedure is typically used to successively generate groups of
words and phrases with similar semantic meaning from a corpus
consisting of training sentences. This procedure has been tried on
human-machine dialogues for small task such as travel informa-
tion, but not on a large corpus such as the Wall Street Journal.

This work was motivated by a desire to automatically build
semantic classes, or concepts, that can be used directly by a nat-
ural language understanding system. We have previously shown
that domain-independent concepts often occur in similar syntactic
and lexical contexts across domains [2]. Two metrics, the concept-
comparison and concept-projection metric, were used to measure
the portability of a concept from one domain to another. The abil-
ity to automatically induce a concept in one domain and port it to
a new domain for which little training data is available would be a
powerful tool for developers building new speech services.
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In [3]-[9], the idea of auto-induction of semantic classes using
a similarity metric was proposed. The choice of the metric used
to determine the degree of similarity between two candidate words
being considered for a semantic class is clearly a critical issue. In
this paper, we compare the performance of four different metrics
used for auto-induction. These metrics are the Kullback-Leibler
distance, the Information-Radius distance, the Manhattan-Norm
distance, and the Vector-Product similarity [6, 10]. The metrics
are evaluated for four different application domains: a movie in-
formation retrieval service, the Carmen-Sandiego computer game,
a travel reservation system, and the Wall Street Journal. The WSJ
was a large, text-based corpus. The other three were small, tran-
scribed dialogues between human subjects and agents. The metrics
are evaluated by comparing results from automatic and manual an-
notation of semantic classes.

2. AUTO-INDUCTION OF CONCEPTS

There are two major issues when auto-inducing classes: 1) find-
ing phrases that act as a single lexical unit, and 2) finding words
(and phrases) with similar semantic content, referred to as seman-
tic classes or concepts. The second issue is the focus of this study.

Concepts are auto-induced in an iterative process [4, 8, 9],
shown schematically in Fig. 1. On the left it is shown how a typ-
ical sentence from the Travel domain is processed by each mod-
ule. There are three main steps to auto-inducing classes, a lexical
phraser which groups words in a single lexical unit, a semantic
generalizer that generates rules that map words (and concepts) to
concepts, and a corpus parser which re-parses the corpus using the
rules generated from the semantic generalizer. The lexical phraser
and the semantic generalizer are described next in some detail.

2.1. Lexical phraser

The top block in Fig. 1 is the lexical phraser that creates a list
containing common phrases, or sentence-fragments. Frequently
co-occurring words such as “New York” are chunked into a single
phrase, e.g., New York � [New York]. Furthermore, we induced
hierarchical phrasing by permitting the phraser to operate on its
own output.

The lexical phraser groups consecutive words into phrases by
using a weighted point-wise mutual information (MI) measure
[10] to find those lexical entities (referred to as words in the re-
mainder of this paper) that co-occur often. The � phrases with the
largest MI measure,
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for the words
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and
� �

, are kept at each iteration. They are only
retained in successive iterations if they are classified into semantic
groups in the following, semantic generalizer, module.

We found from studying the three smallest corpora that � �
���

phrases (or more generally, chunks) per iteration were a rea-
sonable number for the small corpora used for three of the four
domains in this study. For comparison purposes, the same crite-
rion was used for the much larger WSJ corpus. Fewer than 10
chunks meant that certain commonly occurring phrases, such as I
want, would not be combined. More than 50 chunks created so
many nested chunks, such as [[go to] Newark], that entire sen-
tences were frequently combined into a single sentence entity in
the smaller domains. This prevented further semantic generaliza-
tions for words or sentence fragments (such as Newark being a
member of a � city name � class, where brackets denote a seman-
tic class label) within these large sentence-level chunks.

2.2. Semantic generalization

The next block in Fig. 1, the semantic generalizer, is the primary
topic of this paper. Grammar rules are generated each iteration,
where a rule maps a word, sentence fragment (from the previous
block), or previously formed class, into a semantic class whose
members share the same meaning. The main criterion for generat-
ing such groupings (as discussed in the next section) is lexical or
semantic similarity of the left of right-hand context for the mem-
bers of a group. As an example, city names are grouped into the
same class because they are used in similar lexical contexts, for ex-
ample: I want to fly to � city name � tomorrow. Ideally, only one
semantic merger would be generated each iteration so that the new
semantic group could be incorporated into the corpus immediately.
To reduce computational complexity five rules were generated per
iteration; no qualitative difference was seen, occasionally the or-
der in generating grammar rules was altered. Next, we compare
the ability of four different metrics to estimate the degree of simi-
larity between pairs of “words” (phrases or even class labels in the
general case) in a bigram context.

2.3. Similarity metrics

The semantic generalizer pairs words or phrases (generated in the
preceding lexical phraser module) according to the similarity of
their syntactic environments. We consider a candidate word,

�
,

in a word sequence,
�������	��
 � �
������� � , with left and right con-

texts,
� 


and
� �

. Two probability distributions are calculated,� 
 � � 
 	 �

�� ���
and

� � � � � 	 �
��� ���
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bigram contexts respectively. The right-context bigrams are calcu-
lated using the usual word order, and the left-context probabilties
are calculated with a reversed order training corpus using standard
� -gram training tools.

We estimate the similarity of two words,
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, as the
sum of the symmetric left and right context-dependent distances
[8], giving the total distance� 
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is the left-context
distance and the DR distance terms are similar, using the right-
context probabilities,

� � 	 � � � � �
. The distance,

�
, used in each

term in Eq. 2, is calculated by means of one of four metrics studied
in this work. Three of these four metrics are distances: Kullback-
Leibler (KL), Information-Radius (IR), and the Manhattan-Norm
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  I want to go to New York today.


  New York =>  [New_York]


  <0>={go, travel, fly}

  <1>={Boston, [New_York]}


  I want to <0>  to <1> today.


Fig. 1. Schematic view of the iterative procedure used for the auto-
induction of semantic classes.

(MN). The fourth, the Vector-Product (VP), is actually a similarity
measure.

The KL distance has been commonly used for the auto-
induction of classes [4, 8, 9]. However, the KL metric is un-
bounded since it includes ratios whose denominators may ap-
proach zero. This has the consequence that the KL distance can
be dominated by a few terms, or even just one. This inspired us to
investigate three other metrics, all bounded. We compared them by
subjectively evaluating the quality of the semantic classes gener-
ated by each. The Kullback-Leibler, Information Radius and Man-
hattan Norm are distance measurements. The fourth, the Vector
Product, is a similarity measure.

2.3.1. Kullback-Leibler distance (KL)

The Kullback-Leibler (KL) distance is a relative entropy measure
[11] of the distance between two distributions,
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shows the KL distance between two bigram contexts (left-context)
as a means of determining the similarity between two words,
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Following Eq. 2, the total, symmetric KL distance is given by� 
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example, the left-context dependent KL distance
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where sum is over all words in the vocabulary, � . In addition, a re-
lated problem is that the denominator in the logarithm ratio can be
very small in cases where the statistics are poor. This is especially



an issue for our studies since we are interested in developing lan-
guage models for new domains for which there are limited training
data and a metric should not be used if the final sum is dominated
by one or two terms.

2.3.2. Information-radius distance (IR)

The IR distance is similar to the KL distance [6], but is bounded
because the denominator for the logarithmic ratio is the average of
the two probabilities being considered. The total, symmetric IR
distance is given by
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with a maximum distance,
� �"! 	 � �

for each of the four terms.

2.3.3. Manhattan-norm distance (MN)

The Manhattan-norm (also referred to as the L1 distance) is just
the absolute value of the difference of the two distributions and is
given by
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4, the left and right context sums each being between 0 and 2. The
left-context dependent term is
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2.3.4. Vector-product similarity (VP)

This metric is a similarity measure, rather than a difference mea-
sure. This is the vector product of two vectors, each vector be-
ing a sequence of bigram probabilities. The total distance is
� 
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 � and each term is bounded by 0 (no
similarity) and 1 (identical vectors). The left-context vector prod-
uct is
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and � 

� has an upper bound of 2, which is the value for which
two words are the closest match.

2.4. The “Stopping Criterion”

The semantic generalizer iteratively creates classes from candidate
pairs until the system eventually runs out of candidates. Initially,
the merger rules are terminal rules, where words and phrases are
merged into new or existing semantic classes; in later iterations,
the mergers are predominately merging one class into another.
Eventually, all classes are merged into a single “sentence-level”
class. Therefore, we need to identify the stopping point, the point
where enough merger rules have been generated, identifying se-
mantic classes of interest to a developer of a natural language un-
derstanding system. However, we have not yet found a good gen-
eral stopping criterion; for this work, we chose to evaluate the first

Feature Carmen Movie Travel WSJ
Sentences 2,416 2,500 1,451 6,920
Words 12,128 16,386 7,811 152,526
Unigrams 433 583 764 13,219
Bigrams 256 368 278 11,441
Trigrams 334 499 240 6,484

Table 1. Statistics for the four domains: Carmen-Sandiego (Car-
men), Movie, Travel, and Wall Street Journal (WSJ).

	 groups provided by the semantic generalizer. In our experience,
at least with small semantically homogeneous domains, good re-
sults are obtained by stopping after 	 ��

�

groups have been
generated.

3. EXPERIMENTAL RESULTS

Several methods were used to compare the efficacy of the different
metrics. A subjective comparison asked human subjects to evalu-
ate the first 40 groups generated for each metric for each of the
four domains in this study. Five naive evaluators labeled each
terminal and merger rule for each metric and domain. Each rule
could be given a 0 (bad rule), 1 (good rule), or 0.5 (not clear). The
agreement between labelers can be determined using the standard
kappa-evaluation statistic [12], where � ���

means labelers are in
complete agreement and � �����

, complete disagreement.1 In our
studies, the average value of � for all pairs of evaluators, for all
metrics and domains, is � ��� � � �

. This value ranged from a mini-
mum of 0.74 for the Carmen domain to a maximum of 0.94 for the
WSJ task. This indicates that the labelers are mostly in agreement,
although for some domains they agree less than perfectly.

3.1. Four domains used in this study

Table 1 contains the corpus statistics for the four domains used
in this study. Three domains used in a previous study [2] are
corpora from human-machine conversations: Carmen-Sandiego, a
children’s computer game; Movie, an information retrieval task;
and Travel, an air, hotel, and car reservation system. The first
three corpora were small; each corpus contained less than 2500
sentences and fewer than 20,000 words. The fourth domain con-
sists of a subset of 6,920 sentences, and about 150,000 words, from
the Wall Street Journal (WSJ) corpora. This WSJ corpus consists
of many topics ranging in size from two sentences (about 40 to 50
words) to several dozen sentences (about 1000 words). The WSJ
was included in this study to investigate the limitations of auto-
matic concept induction when dealing with a large semantically
heterogeneous corpus. In Table 1, the set size for each feature is
shown; bigrams and trigrams are only included for extant word
sequences. A cutoff threshold of three was used for bigrams and
trigrams.

3.2. Some auto-induced classes for the Travel domain

Table 2 shows some of the classes induced in the Travel domain
using the VP similarity metric. The classes shown are some of the

1The � statistic is defined as ����������� �!����"#�
 �!����"#� where P(a) is the proba-
bility of agreement in labeling and P(c) is the probability of agreement by
chance.



Class Members
� G0 � second, third, sixth, ninth
� G1 � fourteenth, twentieth
� G2 � last, latest, first
� G3 � Boston, Newark, [San � G21 � ]
� G4 � [I’d like], [I want], [I need]
� G5 � fourth, fifth
� G14 � airport, seventeenth
� G21 � Antonio, Diego
� G22 � eighteenth, [twenty � G5 � ]

Table 2. Sample auto-induced classes for the Travel domain.

first 40 classes induced. Most of the classes are reasonably well
defined, matching human judgment. The classes formed predomi-
nantly correspond to common travel concepts such as dates, place
names, and company names.

Some of the class members are misclassified, such as � G14 �� ������� ��� ��� �
	�� � � � � ��� � �
� � . These are word combinations oc-
curring in a similar lexical bigram-context. In the case of � G14 � ,
the most common lexical context was

� � � �
the /s � , where /s is

the end of sentence marker. This indicates that the bigram context
is sometimes too local to capture semantic similarity.

3.3. A comparison of the four metrics for all four domains

Table 3 shows the number of misclassified elements for each of the
four metrics for the four domains studied. Data are for the first 40
classes formed. These forty classes typically included about 120
rules for merging single words and phrases, and about 15 rules for
merging two existing classes together. The main exception was
the WSJ corpus, which had almost no class-class mergers, due to
the large size of the WSJ corpus (see Table 1). There was no ap-
preciable difference observed between a metric’s ability to merge
individual words and phrases into an existing class, and its ability
to merge two existing classes.

The ability of any metric to induce classes was worst for the
WSJ corpus, with all four metrics generating semantic classes
with more than ����� of the members misclassified. All the met-
rics use bigram-contexts for probability computation, so phrases
of the type,

����������� � ����� ����� � , classify all words,
�

, in the
same class. In the WSJ corpus, an example is: The daughter of
the firm’s founder ... and The string of losses .... In such cases,� � 	�� ��������� � � �
	 ����� � � �

is a broad part-of-speech category such
as a singular noun. This problem does not occur in the other three
domains for three main reasons. Each of the small corpora con-
tains a limited number of query types, limited vocabulary (less
than 800 words), and limited number of semantic classes with a
precise meaning (such as � city name � ).

All four metrics created tightly defined classes for the Movie
domain because queries were limited to three types of WH-
questions: what, when, where. A typical when-request for this
domain was, When is Lion King playing at Northgate theatre?

Overall, the bounded metrics perform better than the un-
bounded KL distance. For example, the IR distance is better than
the KL distance because the near-zero probabilities have only a
small influence. The poor performance of the VP-similarity may
be due to the limited number of extant bigrams.

Domain IR KL MN VP
Carmen 27.2 % 30.6 % 28.0 % 30.7 %
Movie 8.4 9.6 10.5 12.3
Travel 22.1 25.3 21.7 26.1
WSJ 79.9 88.9 76.1 76.8

Table 3. Percentage of misclassified semantic class members.
Metrics used were: Kullback-Leibler (KL), Information-Radius
(IR), Manhattan-Norm (MN), and Vector-Product (VP).

4. CONCLUSIONS

We conclude that from the four semantic similarity metrics pro-
posed for auto-inducing semantic classes, the KL and VP metrics
perform the worst, while the MN and IR metrics are the best at
classifying words and phrases into semantic groups. Good clas-
sification results have been demonstrated for three semantically
homogeneous domains using these context-based similarity met-
rics. However, for the large semantically heterogeneous WSJ cor-
pus the bigram-context did not provide adequate information for
auto-inducing semantic classes. Further research is needed to in-
vestigate other syntactic and lexical features that indicate semantic
similarity. More work is also needed for developing the criterion
for stopping the iterative semantic generalization process.

5. REFERENCES

[1] A. Pargellis, H.-K. J. Kuo, C.-H. Lee, “Automatic Dialogue Genera-
tor Creates User Defined Applications”, Proc. of the Sixth European
Conf. on Speech Comm. and Tech., Budapest, vol. 3, pp. 1175-1178,
1999.

[2] A. N. Pargellis, E. Fosler-Lussier, C.-H. Lee, A. Potamianos, “Met-
rics for Measuring Domain Independence of Semantic Classes”,
Proc. of the Seventh European Conf. on Speech Comm. and Tech.,
Aalborg, Sept. 2001.

[3] P. F. Brown, et al., “Class-based n-gram models of natural language,”
Computational Linguistics, vol. 18(4), pp. 467-479, 1992.

[4] M. K. McCandless, J. R. Glass, “Empirical acquisition of word and
phrase classes in the ATIS domain,” Proc. of the Third European
Conf. on Speech Comm. and Tech., Berlin, pp. 981-984, 1993.

[5] A. Gorin, G. Riccardi, J. H. Wright, “How May I Help You?”,
Speech Communications, vol. 23, pp. 113-127, 1997.

[6] I. Dagan, L. Lee, F. Pereira, “Similarity-Based Methods for Word-
Sense Disambiguation”, Proc. of the 35th Annual Meeting of the
ACL, with EACL 8, 1997

[7] K. Arai, J. H. Wright, G. Riccardi, A. L. Gorin, “Grammar Fragment
Acquisition using Syntactic and Semantic Clustering,” Proc. Fifth
Intl. Conf. on Spoken Lang. Proc., Sydney, vol. 5, pp. 2051-2054,
1998.

[8] K.-C. Siu, H. M. Meng, “Semi-automatic Acquisition of Domain-
Specific Semantic Structures,” Proc. of the Sixth European Conf. on
Speech Comm. and Tech., Budapest, vol. 5, pp. 2039-2042, 1999.

[9] E. Fosler-Lussier, H.-K. J. Kuo, “Using Semantic Class Information
for Rapid Development of Language Models within ASR Dialogue
Systems,” Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal
Proc., Salt Lake City, 2001.

[10] C. D. Manning and H. Schutze, Foundations of Statistical Natural
Language Processing, The MIT Press, Cambridge, 2000.

[11] R. O Duda, P. E. Hart, D. G. Stork, Pattern Classification, John Wiley
& Sons, Inc., New York, 2001.

[12] J. Cohen, “A coefficient of agreement for nominal scales.” Educa-
tional and Pschological Measurement, vol. 20, pp. 307-320, 1960.


