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ABSTRACT

In this paper, an unsupervised semantic class induction algorithm
is proposed that is based on the principle that similarity of context
implies similarity of meaning. Two semantic similarity metrics
that are variations of the Vector Product distance are used in order
to measure the semantic distance between words and to automati-
cally generate semantic classes. The first metric computes “wide-
context” similarity between words using a “bag-of-words” model,
while the second metric computes “narrow-context” similarity us-
ing a bigram language model. A hybrid metric that is defined as the
linear combination of the wide and narrow-context metrics is also
proposed and evaluated. To cluster words into semantic classes
an iterative clustering algorithm is used. The semantic metrics
are evaluated on two corpora: a semantically heterogeneous web
news domain (HR-Net) and an application-specific travel reserva-
tion corpus (ATIS). For the hybrid metric, semantic class member
precision of 85% is achieved at 17% recall for the HR-Net task and
precision of 85% is achieved at 55% recall for the ATIS task.

1. INTRODUCTION

Many applications dealing with textual information require classi-
fication of words into semantic classes including spoken dialogue
systems, language modelling, speech understanding and machine
translation applications. For example, a natural language under-
standing module, embedded in a computer dialogue system, de-
mands knowledge of semantic classes, in order to extract the in-
formation from the string that was transcribed by the speech rec-
ognizer. Manual construction of semantic classes is a time con-
suming task and often requires expert knowledge; semantic fea-
tures are also sensitive to domain changes. Clearly, an automatic
or semi-automatic algorithm for extracting semantic classes from
text can significantly reduce development-time in many natural
language processing systems. Unsupervised induction of semantic
classes is also the first step towards unsupervised learning of se-
mantics from text, the “holy grail” of natural language processing.

Among the numerous techniques and systems that have been
proposed, three major families of techniques can be distinguished:
numerical, symbolic and hybrid. Numerical approaches exploit

the frequential aspect of data, and use statistical techniques; mean-
while, symbolic approaches examine the structure of data. Among
the numerical approaches, [13] uses a semi-automatic approach in
order to cluster words according to a similarity metric, working
in a domain-specific corpus, ATIS. However, the resulting classes
had to be hand-revised. More recently, in [11, ?], an automatic
procedure is described that classifies words and concepts into se-
mantic classes, according to the similarity of their lexical environ-
ment. This approach induces semantically compact classes espe-
cially for restricted domains where the expressive style is oriented
towards the specific needs of the certain task. Among symbolic
approaches, Text-to-Onto [10, 8, 9], deals with discovering non
taxonomic relationships from text and enhancing an already de-
fined taxonomic hierarchy. The Text-to-Onto system uses shallow
parsing as a natural language module. Asium [3, 2], is able to
learn semantic knowledge from text by (mostly) extracting con-
cepts/classes and putting them into taxonomic relationships. It is
a semi-automatic system, meaning that user’s control is needed in
the process. In [7], a system is described that constructs a domain
specific ontology from text documents [14]. The documents are
read, processed, and a graph-structured ontology is produced us-
ing contemporary statistical methods of information retrieval such
as Boolean, extended Boolean and Vector Space approaches.

The systems described above often lack the generality and/or
performance necessary to make them useful for a wide range of
natural language processing applications. In this paper, we extend
the work of [11] and enhance the semantic similarity metric with
“wide-context” information. We show that the enhanced metric
can produce high-quality clustering of words into semantic classes
even for semantically heterogeneous domains such as news. It is
also shown that the combination of the “narrow-context” metric
proposed in [11] with the “wide-context” metric outperforms both
metrics. Finally, we observe that hierarchical taxonomic relation-
ships among the induced semantic classes can be identified.

The rest of this paper is organized as follows: In Section 2, the
semantic distance metrics and the automatic class induction algo-
rithm is briefly presented. In Section 3, a step by step description
of the automatic induction algorithm and its parameters is given.
Experimental results and evaluation are presented in Section 4 and



Section 5 concludes the paper.

2. THEORETICAL FRAMEWORK

We investigate an iterative procedure for automatic induction of
semantic classes, consisting of two main components: a class gen-
erator and a corpus parser. The class generator, explores the con-
text information of every word, calculating the similarity between
words; the semantic similarity distance combines two variations of
the Vector Product similarity metric. Semantically similar words
or concepts are grouped together into classes. The corpus parser,
re-parses the corpus using the class definitions generated by the
class generator, i.e., substitutes all instances of each class mem-
ber with the corresponding class label. The class generator and
corpus parser are run sequentially and iteratively over the corpus.

Next, we present the class generation algorithm. The two
Vector Product similarity metrics are presented first: one metric
computes “wide-context” similarity between words using a “bag-
of-words” model and a second metric computes “narrow-context”
similarity using a bigram language model [11]. Then, a linear
combination of the two metrics is proposed. This section con-
cludes with the presentation of the algorithm for merging words
into classes.

2.1. Vector Product Similarity in “Bag-of-Words” Model

“Bag-of-words” or Vector Space [12] representation models view
each word as one dimension in a high-dimensional vector space.
Every document is considered as a vector in this space, with a zero
value for every word that does not appear in the document, and
a non-zero value for every word that appears in it. The non-zero
values are set by using various weighting schemes — for example
words that occur frequently in a document are given higher values.
Similarity between two documents is measured using the cosine of
the (normalized) vectors representing the two documents.

In our work, the Vector Space model is used to calculate the
similarity between words that appear in a corpus of documents.
The key assumption is that the context surrounding a given word
provides information about its meaning. First, a vocabulary ��������	�
������������������

is built containing the � unique words in the cor-
pus. Then, a context window size ��� is selected; for each word� in the vocabulary all right and left contexts of length ��� are
identified in the training corpus, e.g., corpus segments

�����! " ... � �  "#� �  " w � �  $%� �  $ ... �����! $
where ��&  " and �'&  $ represent the (*),+ word to the left and to the
right of � respectively. We define the left-right context set of
words � "-$. ��� as the set of unique words that are found in the
left and right contexts of � for a fixed context window size ��� .

The feature vector for every word � is defined as /10  ��� ��,2 � �32 � �4�������
2 � �
where

2 & is a non-negative integer and ��� is the
context window size. Note that the feature vector size is equal to
the vocabulary size � , i.e., we have a feature for each word in

the vocabulary. The ( )�+ feature value
2 & reflects the occurrences of

vocabulary word
� & within the left or right context window ��� .

These non-negative values,
2 & , are set according to one of two dif-

ferent weighting schemes:
Binary Weighting Scheme ‘B’:

2
5& � 687 �
if

� &:9 � ";$. �<�= �
if

� &?>9 � ";$. �<�
Full Weighting Scheme ‘F’:

2�@& � 6BA ��� &DC ��� �E� if
� & 9 � "-$F ���= �

if
� & >9 � "-$F ���

where
A ��� & C ��� � is the number of occurrences of

� & within a left
and right window context of size ��� for the word � and for the
whole corpus.

The similarity of two words, � and �?G , is measured as the
cosine distance of their corresponding feature vectors, /10  ��� and/ 0IH  �<� . In case of weighting scheme ‘B’ the similarity, �KJ � 5 , is
defined as:

�LJ � 5 � � � � G � � M
�&ON � 2 5& 2 G 5&P

M
�&ON � �,2 5& � � P M

�&ON � �,2 G 5& � � (1)

for / 50  ��� � �,2 5 � �
2 5� ���������
2 5� �
and / 50 H  �<� � �,2 G 5� �32 G 5� �	�������
2 G 5� � .

In case of weighting scheme ‘F’, the similarity, �KJ � @ , is calculated
using the following equation:

�QJ � @ � � � � G � � M
�&ON � 2 @& 2 G @&P

M
�&ON � �,2 @& � � P M

�&ON � �,2 G @& � � (2)

for / @0  ��� � �,2 @ � �32 @� ���������
2 @� �
and / @0IH  �<� � �,2 G @� �32 G @� �4�������
2 G @� � .

2.2. Vector Product Similarity in Bigram Language Model

As above, the main idea underlying our approach is that the sim-
ilarity of context implies similarity of meaning. We assume that
words, which are similar in contextual distribution, have a close
semantic relation [11, 4]. Consider the following sentences.

A strong quake measuring on the Richter Scale...
A strong earthquake measuring according to ...

The two italicized words occur in same lexical contexts and they
are indeed similar in meaning, referring to the concept of earth-
quake.

A word, w, is considered with its neighboring words in a se-
quence ����� � �  " w � �  $ �������
where the words in the left and right contexts are represented by� �  " and � �  $ respectively.

The similarity of two words, � � and � � , is estimated as the
sum of the left and right context-dependent distances. This sum



gives the total “distance” between the probability distributions for,� � and � � as:

� ";$ � � � � � � � � � "�*��� � "�E��� � $�*��� � $�E� (3)

where
� "

and
� $

are the left-context and right-context distance
respectively and

� �*�
denotes the (possibly asymmetric) distance

between � � and � � [13, 11]. Pargellis et al [11] propose four dif-
ferent distance metrics

�
, all being computed directly from the

conditional probability distributions of contexts given words, e.g.,
see Eqs. (5), (6). In this paper, we have used the Vector Prod-
uct metric. In order to calculate the semantic distance between
two words, we compute the cosine distance between two feature
vectors; each feature vector of a word � measures the conditional
probability of all possible contexts

� & given that word � ��� &DC � � ,
i.e., each vector contains bigram language model probabilities for
(context, word) pairs. Given the symmetric nature of the Vector
Product metric, Eq. (3) becomes:

�LJ � � �LJ "-$ � � ��� � �	� � �QJ "�*� � �QJ $�*� (4)

because �LJ "�*��� �LJ "�E� and �LJ $�*��� �QJ $�E� . The two terms of
Eq. (4) are defined as follows [11]:

�LJ "�*� �K� M
�&ON � � " � ��� & C � �E� � "� ��� & C � �	�P

M
�&ON � � " � ��� &DC � � � � P M

�&ON � � "� ��� &EC � � � � (5)

�LJ $�*� �K� M
�&ON � � $ � ��� & C � �E� � $� ��� & C � �	�P

M
�& N � � $ � ��� &DC � � � � P M

�&ON � � $� ��� &EC � � � � (6)

where ��� ���-�	�
������������������
is the vocabulary set, and �

" � ��� & C � �E�
is the conditional probability of word

� & preceding � � in the cor-
pus given word � � , i.e., the

� & � � � bigram model probability.

2.3. Linear Combination

Combining classifiers [17, 6] is a particularly useful technique for
diverse corpora, such as those that involve large amount of noise
or unusually high dimensional patterns. A popular and simple
way of combining multiple classifiers is simple averaging of the
corresponding output values. Weighted averaging has also been
proposed, along with different methods of computing the proper
classifier weights [16]. In our approach, we have two different
forms of the Vector Product metric with the same objective but
with different perspective of the input corpus: �LJ � with broad
lexical scope and �QJ � that concentrates on the immediate con-
text of each word. Our goal is to create a combined metric that
takes into account both wide-context and narrow-context informa-
tion. In our experiments, a weighted linear combination of the two
metrics was used as follows:

�QJ�� �
	 � �LJ � � 	 � �LJ � (7)

where 	 � + 	 � =1.

2.4. Grouping Semantically Related Words

The �KJ � , �LJ � and �LJ � metrics output a list of pairs, ranked
according to the semantic similarity of their members, from se-
mantically similar to semantically dissimilar. Words and semantic
classes (induced in previous system iterations) are valid members
of such pairs. From this list that contains all possible word pairs in
the corpus, one has to choose a fixed number of top ranking pairs
in order to induce the next set of semantic classes. The mapping
from top ranking pairs to classes was achieved using a variant of
the algorithm presented in [11]. In [11], a new class label is created
for each pair and the two members are assigned to the new class.
However, there is no way to merge more than two lexical units at
one step which may lead to a large number of hierarchically nested
classes.

Extending the work of Pargellis et al, we implemented an al-
gorithm that creates classes that are allowed to have more than
two members. This algorithm examines multiple pairs and finds
those pairs that have a common element. Provided that certain
conditions are met, a new class label is created and the union of
these pairs is assigned to this class. Assume that the pairs (A,B),
(A,C), (B,D) were ranked at the upper part of the list. According
to the proposed algorithm, the class (A,B,C,D) will be created. To
avoid over-generalizations only pairs that are rank ordered close
to each other are allowed to participate in this process. The pa-
rameter “Search Margin”, ��� , defines the maximum distance be-
tween two pairs (in the semantic distance rank ordered list) that
are allowed to be merged in a single class. Consider the following
ranked pairs

Position in List 1 2 3 4 5
Pairs A B B C E F F G C D

where A, B, C, D, E, F, G represent candidate words or classes. For��� �
 the classes (A,B,C) and (E,F,G) will be generated, while
for ��� ��� the classes (A,B,C,D) and (E,F,G) will be generated.
By adding the search margin ��� constraint it was observed that
the semantic homogeny of the created classes was better preserved.

3. EXPERIMENTAL PROCEDURE

3.1. Corpora

The first corpus we experimented with was the semantically het-
erogeneous “HR-Net” corpus that was downloaded from the Hel-
lenic Resources Network (http://www.hri.org). Specifically, news
in English from the Hellenic Radio (ERA) between 01/01/2005
and 05/11/2005 were gathered, considering every article as a sin-
gle document. HTML tags were removed from each document.
The number of articles in the corpus is 2,082, the total number
of words is 549,660, the size of the vocabulary is 22,904 words,
the average number of words per document is 264, the maximum
number of words found in a document is 1,495 and the minimum
41.



The second corpus we experimented with was the domain spe-
cific ATIS corpus. This corpus contains transcribed utterances
dealing with travel information. We used an experimental cor-
pus consisting of 1,705 utterances. The total number of words
is 19,197 and the size of vocabulary is 575 words.

3.2. Bigram Language Model

For the �LJ � metric, a bigram language model was built using the
CMU Statistical Language Modeling toolkit [1], applying Witten-
Bell discounting [5]. Since the computation of bigram probabil-
ities in Eq. (5), (6) over � is a time consuming procedure for
the HR-Net corpus, we focused only on the “seen” bigrams (bi-
grams that appeared in the corpus), for which no backoff weight
is needed. Furthermore, we set a threshold of � “seen” bigrams
for each word participating in the pair, in order to reduce compu-
tational complexity. We followed this strategy only for the HR-
Net corpus by setting � ��� , while for the ATIS corpus we did
not demand a minimum number of “seen” bigrams to compute the
similarity between words.

3.3. Experiments

The proposed system works iteratively performing the following
steps:

Step 1: Calculation of the �LJ � metric.
Step 2: Calculation of the �LJ � metric.
Step 3: Normalization of the �LJ � and �KJ � results using min-max
normalization.
Step 4: Calculation of the hybrid �QJ � metric.
Step 5: Induction of semantic classes.
Step 6: Corpus re-parsing: all occurrences of the derived class
members in the corpus are substituted by the corresponding class
label.
Step 7: If specified number of iteration ��� is reached stop, else go
to step 1.

The experimental parameters are:

Parameter 0: The choice of the weighting scheme for the “wide-
context” semantic similarity metric �LJ � , i.e., use �LJ � @ or �QJ � 5
as defined in Section 2.1.
Parameter 1: The size of the context window ��� for metric �LJ �
as defined in Section 2.1.
Parameter 2: The number of system iterations ( ��� ).
Parameter 3: The number of induced semantic classes per iteration
( ��� ).
Parameter 4: The size of Search Margin ( ��� ) defined in Section
2.4.
Parameter 5: The values of 	 � and 	 � ( � 7��

	 � ) defined in Eq. (7).
These values were estimated on held out data in order to maximize
the performance of the �LJ � metric.

4. EVALUATION

In order to evaluate the induced semantic classes for the HR-Net
corpus, we used as a benchmark a manually crafted semantic tax-
onomy. Two researchers were assigned this task, devising a tax-
onomy of 43 semantic classes with 1,820 word-members in them.
Every word was assigned to a single class. In order to avoid in-
frequent words, a threshold was adopted and only words with fre-
quency greater than 9 in the corpus were included in the taxonomy.
Regarding the experimental procedure, in order to decrease com-
putation time, our system was tested only for these 1,820 words.
The following table illustrates 5 representative handcrafted classes
along with example members.

Class Name Members
Education university, school, student...

Politics Karamanlis, president, minister...
Law prosecutor, judge, crime...

Health hospital, surgery, pharmaceutical...
Sports Olympiacos, UEFA, Rehhagel ...

For the evaluation procedure of the ATIS corpus, we used a man-
ually crafted semantic taxonomy, consisting of 32 classes that in-
clude a total of 291 members. Every word was assigned to a single
class. Regarding the experimental procedure, we generated manu-
ally characteristic chunks, like New York 	 New York, J F K 	
J F K etc. Also, during the experiments on ATIS, all the words
of the vocabulary were taken under consideration. The following
table shows 5 representative handcrafted classes along with some
members.

Class Name Members
City Atlanta, Dallas, Las Vegas...
Day Monday, Tuesday, Friday...

Fairtype one way, round trip, nonstop...
Airline Delta, Lufthansa, T W A...
Meal meal, lunch, breakfast ...

Although a hierarchical semantic taxonomy was also constructed
for both corpora, the evaluation focused only on the flat (terminal)
semantic classes presented above. In other words, every induced
class was evaluated with respect only to the corresponding hand-
crafted class without examining its relationships with other classes
over the taxonomy. An induced class is assumed to correspond to
a handcrafted class, if at least half of its members are included
(“correct members”) in the handcrafted class. Precision and recall
are calculated as follows:

Precision � M 
&ON � A &
M 
& N ��� & Recall � M 
& N � A &

M � N ��� �
where � is the total number of induced classes, � is the total num-
ber of handcrafted classes,

A & is the “correct members” of the (*)�+
induced class, � & is the total number of members of the ( )�+ induced
class and � � is the total number of members of the � )�+ handcrafted
class that appear in the corpus.
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Fig. 1. Cumulative precision on the HR-Net corpus as a function
of system iterations for the three metrics.

4.1. Evaluation Results on the HR-Net corpus

Fig 1 illustrates the performance of the three metrics, �LJ � , �QJ �
and �KJ � on the HR-Net corpus. The parameters used in this
experiments were �KJ � 5 , ���B� 7 =�=

, � � �  = , ��� � 7 =
,��� � 7 =

, 	 � � = � �
(and 	 � � = � 7

). Clearly, the �KJ � met-
ric significantly outperforms the �QJ � metric on this task. This is
expected because the HR-Net corpus is semantically diverse and
words with similar “narrow-context” are often not semantically re-
lated. Despite the poor precision of �QJ � , this metric contributes to
the combined metric �QJ � by identifying those words that have a
distinct bigram context. The linear combination of the two metrics,�LJ � , tends to achieve the best results but the difference between�LJ � and �QJ � is often small or non-existent. The highest preci-
sion, 94.19%, is obtained by �LJ � at the end of the 10 )�+ iteration.

The following table presents the cumulative values of achieved
recall as a function of system’s iterations and metric used ( �LJ�� ,�LJ � or �LJ � ) on the HR-Net corpus (same parameters as above).

Recall
SI �QJ�� �LJ � �KJ �
5 5.54% 4.94% 3.29%

10 10.27% 9.72% 6.15%
15 14.34% 13.62% 8.62%
20 17.30% 16.86% 10.87%

It can be seen, that �LJ�� has slightly higher recall than �LJ � and
that �LJ � is clearly the worst out of the three metrics. Note that for��� �
 = the �LJ � metric generates 24 classes with 315 members.

4.2. Evaluation Results on the ATIS corpus

Fig. 2 shows the precision achieved by the three metrics �LJ � ,�LJ � and �LJ � on the ATIS corpus. For this experiment we used
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Fig. 2. Cumulative precision on the ATIS corpus as a function of
system iterations for the three metrics.

the following parameters: �QJ � 5 , ��� � 7 ==
, �����  = , ��� �7 =

, ��� � � , 	 � � = �  (and 	 � � = � �
). On this domain-specific

corpus the performance of the �LJ � and �LJ � metrics is reversed.�LJ � clearly outperforms �LJ � both in terms of precision and recall
(shown in the table that follows). This is expected because in this
semantically homogeneous corpus the “narrow-context” similarity
often signifies semantic similarity; while there is not enough data
to adequately train the statistics of the “wide-context” metric. The
precision of the linear combination of the two metrics, �QJ � is
slightly higher than the precision of �LJ � , although, by the end
of the 20 )�+ iteration this advantage is gone. Note that the best
precision for �LJ � and �LJ � (almost 100%) is achieved in the first
iteration of the system.

The following table presents the cumulative values of achieved
recall as a function of system iterations and metric used.

Recall
SI �KJ � �QJ � �QJ �
5 28.52% 7.9% 30.58%

10 40.54% 20.96% 43.29%
15 52.57% 35.05% 52.92%
20 60.48% 44.32% 59.1%

It can be seen, that �LJ � and �LJ � have similar recall values, while�LJ � is significantly worse. Note that for ���#�
 = the �QJ � metric
generates 27 classes with 176 members.

5. CONCLUSIONS AND FUTURE WORK

We have presented an unsupervised procedure for automatic in-
duction of semantic classes using a “wide-context” �LJ � and a
“narrow-context” �LJ � semantic similarity metric as well as their
combination �KJ � . It was shown that �QJ � performs best for the



Fig. 3. Pictorial view of relationships among induced classes for
HR-Net

semantically heterogeneous HR-Net corpus, while �LJ � performs
better for the domain-specific ATIS corpus. The hybrid metric�LJ � performed slightly better than the best of �LJ � , �QJ � in our
experiments. Semantic class precision of 85% and recall of 17%
was obtained for the HR-Net corpus. Precision of 85% and recall
of � ��� was achieved for the ATIS corpus.

More work is needed to improve on each of the metrics and,
especially, on the combined metric. During experimentation we
also observed that the system generated automatically some inter-
nal relationships between previous induced semantic classes. A
representative example, taken from the experiments over the HR-
Net corpus is shown in Fig. 3. This aspect of the system can be
considered as a promising step towards the automatic extraction of
a hierarchy between taxonomic classes.
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