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ABSTRACT

We propose a formal two-step frequency domain algorithm for
blind speech separation (BSS) for unknown channel order. This
new approach employs parallel factor analysis (PARAFAC) to
separate the speech signals and a novel integer-least-squares-
based method for matching the arbitrary permutations in the
frequency domain. The proposed algorithm offers guaranteed
convergence and good separation performance, measured both
quantitatively and in subjective tests. Performance gains in signal-
to-interference ratio of up to 10 db are achieved for certain
source-sensor geometries.

1. INTRODUCTION

One of the key problems in speech processing for telecon-
ferencing and mobile telephony applications is that of speaker
separation from multichannel measurements. Such multichannel
measurements provide the opportunity for speaker separation
or speaker-background noise separation, which can be crucial
for intelligibility. The objective of the “blind” source separation
(BSS) problem is to separate the multiple source signals, using
only the measured microphone signals, i.e., without exploring any
additional information about the properties of the sources or the
mixing channels.

In recent years, several methods have been developed to tackle
the BSS problem, but only few of them exploit the inherent non-
stationarity of the speech signals. The majority of the proposed
methods that exploit non-stationarity, consider the simple case
of instantaneous linear mixtures [3]. For the more general case
of convolutive linear mixtures, the approaches can be divided
into frequency domain [1], [2] and time domain methods [4].
In this paper we propose a new frequency domain technique
that exploits non-stationarity of speech signals and deals with
the more general case of convolutive linear mixtures. Similar
approaches have been proposed in [1], [2]. The method in [1],
however, employs a least-squares (LS) gradient descent procedure
in order to separate signals, which is not guaranteed to converge.
On the contrary, our technique is based on the formulation of
the BSS problem as a conjugate symmetric PARAFAC model
that is fitted optimally using a fast and monotonically convergent
alternating LS algorithm. Furthermore, the conjugate symmetric
PARAFAC model exhibits strong identifiability properties that
allows the separation of a much higher number of signals than
what is suggested in [1], [2]. The key problem in the BSS
context is the resolution of the frequency-dependent permutation
ambiguity that strongly deteriorates the separation performance.
In [1] the frequency-dependent permutation ambiguity is auto-
matically resolved by imposing a constraint on the length of the
inverse-channel impulse response W (7), an approach that seems
unmotivated. We propose an interpretable, novel approach based
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on integer-least-squares (ILS) to adjust the arbitrary permutations.
To support our arguments we present numerical simulations using
real speech data and compare the performance of our algorithm
with the one proposed in [1].

2. PROBLEM STATEMENT

Assume I mutually uncorrelated (not necessarily statistically
independent) sources s(t) = [s1(t), ..., sr(t)]”. These sources
are convolved and mixed in a linear medium leading to J sensor
signals «(t) = [z1(t),...,zs(t)]T

z(t) = Ax*s(t) +n(t) = Z A(T)s(t—7)+n() (@)

7=0
fort=1,...,N, where A(7) = [a1(7),...,ar(7)]F e R7*!
for r =0,..., L is the mixing impulse response matrix, c; (1) =
[@1,i(7), ..., ari(T)]F € R7*! is the spatial signature of the

ith source for lag 7, n(t) = [n1(t),...,ns(t)]F is the additive
noise vector, L is the maximum (unknown) channel length, N is
the number of snapshots, * denotes convolution and (.)* denotes
the transpose. The objective of the blind separation problem is to
estimate the inverse-channel impulse response matrix W () from
the observed signals a(t), such that their convolution provides
us with an estimate of the source signals s(¢)

3(t) = W s x(t) 2

Before proceeding further we make the following main assump-
tions: (i) The sources s(t) are zero mean, second-order quasi-
stationary signals; i.e. the variances of the signals are slowly
varying with time such that over short time intervals they can
be assumed approximately stationary, and (ii) The noise n(t) is
zero mean, uncorrelated at each sensor and independent of the
sources.

Following, e.g. [1], one approach towards solving the problem
is to transform it into the frequency domain and to solve the
joint separation problem across frequency bins. Recall the well
known property of the DFT that allows us to express circular
convolutions as products. In (1), however, we assumed a linear
convolution. A linear convolution can be approximated by a
circular convolution if the size T of the DFT’s frame is much
larger than the length of the convolutional sum [1]. In such a case
we can write approximately

x(f,t) = A(f)s(f,t) + n(f,1), forL KT ©)

where z(f,t) = 37 x(t + r)e=F is the DFT of the
frame of size T starting at t, [x(¢),...,z(t + T — 1) and
corresponding expressions apply for s(f,t) and A(f). The ith
column of A(f) represents now the spatial signature of the sth
source in the frequency domain, at frequency f. Let us focus on
a time interval over which the measured signals can be assumed
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stationary (see assumption (i)). The autocorrelation matrix of the
vector of microphone outputs at frequency f is then

= A(f)E[s(f,1)s" (f,t)]A" (f) + E[n(f,t)n" (f,1)]
= A(f)D.(f, ) A" (f) + Du(f,t) (4)

where E[.] denotes the expectation operator and (.)¥ denotes
the Hermitian transpose. Since we assume mutually uncorrelated
sources we postulate diagonal autocorrelation matrix of the
sources D,(f,t), while by assumption the autocorrelation matrix
of the additive noise D, (f,t) is also diagonal.

Now assume that the matrices A(f),f = 0,...,7 — 1 are
available. Then, by taking the Moore-Penrose pseudo-inverse * of
each frequency’s corresponding matrix A(f), and applying the
Inverse DFT to the collection of the acquired pseudo-inverses
At(f) for f = 0,. — 1, where (.) denotes the Moore-
Penrose pseudo- mverse we could determine estimates of the
inverse-channel matrices W(q-) where 7 = 0,...,7 — L
Therefore the Blind Source Separation problem boils down to
the problem of estimating the matrices A(f),f=0,...,7 —1.

It is well known that the matrices A(f),f = 0,...,7 —1
can only be specified up to inherently arbitrary permutations and
scaling of their columns (spatial signatures),that vary arbitrarily
from one frequency bin to another. This constitutes a serious
problem since only consistent permutations and scaling across
frequencies will correctly reconstruct the sources. Hence a second
major problem arises, that of resolving the frequency-dependent
permutation and scaling issue.

3. PARALLEL FACTOR ANALYSIS

By dividing the whole data block of NV snapshots into P sub-
blocks, with each sub-block corresponding to a time interval over
which the source signals are assumed stationary, the measured
snapshots within any pth sub-block correspond to the following
autocorrelation matrix

Ro(f,tp) = A(f)Ds(f,t) A" (f) + Du(fitp)  (5)

for f = 0,...,T — 1, in accordance with (4). Using all P
sub-blocks, we will have P different autocorrelation matrices
{Rz(f,t1), ..., Ra(f,tp)} for each frequency. By neglecting
the noise component for the moment, we observe that for each
frequency, these matrices differ from each other only because the
source signal autocorrelation matrices D, (f,t,) differ from one
sub-block to another.
Let us stack the P matrices R.(f,tp) — Dn(f,tp),p =
., P together to form a three-way array R,(f). The
(4,1, p)th element of such an array can be written as

Tyl,p ]—Zaﬂ

for f = 0,...,T — 1, where v;(f,p) = [Ds(f,tp)]i,i is the
power-spectral-density of the ith source in the pth sub-block
and (.)* denotes the complex conjugate. Defining the matrices

Joi(fp)ed (6)

P(f)eCP* f=0,....,T—1as
1)1(f,1) Ul(le)
P(f) £ ; : @
’U1(f,P) ’U](f,P)

IFor J < T perfect separation is not possible; substantial reduction of
crosstalk is still possible, however, using matched fi Itering to the columns
of A(f), or more sophisticated array processing methods, like Capon
beam-forming.

we can write the following relationship between D,(f,t,) and

P(f)
DS(fatp) = DP{P(f)} (8)

forallp=1,...,Pandall f=1,...,7T. In (8), Dp{.} is the
operator which makes a diagonal matrix by selecting the pth row
and putting it on the main diagonal while putting zeros elsewhere.

Equation (6) implies that r;; ,, is a sum of rank-1triple prod-
ucts; this equation is known as (conjugate-symmetric) parallel
factor (PARAFAC) analysis of r;; , [5]. If I is sufficiently small
(6) represents a low-rank decomposition of R_(f). Therefore, the
problem of estimating the matrix A(f) for a specific frequency f
can be reformulated as the problem of low-rank decomposition of
the three-way autocorrelation array R, (f). By solving a similar
problem separately for every frequency we obtain the entire
collection of the frequency-domain mixing matrices A(f), f =
0,...,T—1.

The uniqueness (up to inherently unresolvable source permu-
tation and scale ambiguities) of all source spatial signatures,
given the exact frequency-domain autocorrelation data is an issue
known as the identifiability of the model. Identifiability condi-
tions i.e., conditions under which the trilinear decomposition of
R, (f) is unique, are discussed in [5].

In practice, the exact autocorrelation matrices R, (f,t,) are
unavailable but can be estimated from the array snapshots
x(t),t = 1,...,N. If we define K = |%=], the sample
autocorrelation matrix estimates are given by

K—-1

Ralfits) = 52 3 @lfity + kD)2 (f,t, +KT)  (9)

k=0

forp=1,...,P.

In our problem, PARAFAC fitting at each frequency was based
on the implementation of a fast and monotonically convergent
least squares separation algorithm, known as trilinear alternating
least squares (TALS) technique [5], which is used to estimate
the matrices A(f), up to a frequency-dependent permutation and
scaling ambiguity. Exactly how these ambiguities are resolved (to
yield our final separation solution), will be discussed in section
IV. For more information on TALS we refer the interested reader
to the above references.

4. RESOLVING THE SCALING AND PERMUTATION
AMBIGUITIES

In this section, we propose a novel approach for resolving the
scaling and permutation ambiguities that arise in the BSS context.
In the first subsection, our method of dealing with the scaling
problem is presented, while the second subsection describes how
the frequency-dependent permutation ambiguity is resolved.

4.1. Resolving the frequency-dependent scaling problem

Assume, for the moment, that the frequency-dependent permu-
tation ambiguity is resolved, that is the only remaining problem
is the frequency-dependent scaling ambiguity of columns of the
estimated mixing matrices. The resolution of the latter is based
upon the following result, whose proof is omitted for brevity

Result 1: Consider a full rank matrix A € C/*1 with J > I.
Let A, € C/*' denote the matrix whose ith column A, . ;) is
the 4th column of A, A( i) d|V|ded by the element a;, ; of
A( gy With 33 € {1,...,J}, e, Anyy = ajli,zA( i)yt =

I Then ALA = diag{[aj,1,...,aj,.1]"}, where
diag{:c} forms a diagonal matrix from vector .
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Let

A = [a(haa(f)y - er(fas ()] =
()diag {[e1(f) "} =ame) w

where ¢;(f) € C for all + = 1,...,1I, represent a scaled
version of the true mixing matrix A(f) at frequency f. Di-
vide the columns of matrix As(f) by their respective elements

{er(fagi i (f),-- . er(Fagrr(f}, with i € {1,...,J}, to

yield matrix A, (f)

. 1 1
As,n(f)—As(f)dwg{[cl(f)ajl,l(f)’""cI(f)ajI,I(f)]"}
A(f)C(f)Cl(f)diag{ [ajlll(f)"“’ ajfll(f)] } B

. 1 1 1*
A(f)dmg{[%l(f),...,%I(f)] }:Anu) (1)

where A, (f) denotes the matrix whose ith column A, (f)(..;
is the ith column of the true mlxmg matrix A(f), (f)( 2),
divided by element a;, :(f) of A(f)(..:

Let us multlply 3) (We neglect the n0|se term) from the left
with the pseudo-inverse Al ,(f) = AL(f). Invoking Result 1,
we have

Al (Hz(f,t) = AL(f)A(f)s(f,t) =
diag{[ej, 1(f); - - - i1 (H] }s(f,t) =
[, 1(F)s1(fot), .- a5, 0 (Fsr(£,0)]T (12)

We see from (12), that each source signal s;(f,t) is multiplied
by the element aj , ;(f), for all ¢ = 1,...,I. But a , ;(f) is
just the total frequency response that corresponds to the link
between the ith speaker and the j;th microphone, at frequency
f, which is approximately constant across frequency in (quasi-
) non reverberant environments. Thus, the frequency-dependent
scaling of the individual sources that would result if we had
used the pseudo-inverses of the scaled matrices (10) in (12), now
is reduced to a single, frequency-independent scaling, i.e., the
frequency-dependent scaling ambiguity problem is resolved.
Intuitively, the filtering process of the ith speaker’s speech
signal s;(t) through «j, :(f), that yields the separated signal
$;(t) = ay;,:(t)*s;(t), means that after separation, we essentially
listen to the signal s;(t) the way it is captured by the j;th
microphone, as if there were no other interfering speakers.

4.2. Resolving the frequency-dependent permutation prob-
lem

In the previous subsection we assumed that the frequency-
dependent permutation ambiguity was already resolved. Thus,
prior to applying the method presented above for dealing with the
scaling problem, the frequency-dependent permutation ambiguity
of the columns of the matrices A(f),f = 0,...,T — 1, must
be lifted. We resolve the permutation problem by exploiting two
inherent attributes of the system under study. Proper interpretation
and utilization of each of these attributes allows us to transform
the frequency-dependent permutation problem into an optimiza-
tion problem with each attribute providing us with a different
optimization criterion. We also formulate a joint optimization
criterion that incorporates these two constituent criteria.

oCriterionl: Let the collection of vectors {au;(f), f
0,...,T—1,is = 1,...,1} denote the entire collection of the
(normallzed Wlth respect to an arbitrary reference microphone)

spatial signatures that are acquired after the application of the
TALS algorithm. In non-reverberant (or, mildly reverberant)
environments, where the recordings have been conducted using
microphones with (almost) flat frequency responses, the magni-
tudes of the elements of the normalized spatial signatures, are ap-
proximately independent of frequency. Thus the aforementioned
collection of normalized spatial signatures can be divided into
I separate clusters, each of the latter being associated with a
different source.

We use vector quantization [7] to determine the I centroids
{e1,...,er}, withe; € €7, but other clustering techniques could
also be used. With the I centroids at our disposal, the frequency-
dependent permutation problem boils down to the following
Integer Least Squares (ILS) minimization problem

{Sf}};:gﬁ ]l}T Z 1€ — An( )Hll{sf=1}

- An(f)l'lzl{sfzz} — .= An(f)HI!]-{Sf:I!}”% (13)
where C € C/*! is the matrix whose columns are the centroids
{eiyi=1,...,I}, Ap(f) € €7 is the matrix whose columns
are the arbitrarily permuted vectors {an,;(f),s = 1,...,1},
I, € 1 for 1 = 1,...,I! is one of the total number
of I' permutation matrices of dimensionality I x I. Note that
]-{m:a} =0ifz # «a and ]-{m:a} =lifz=a.

oCriterion2: For adjacent frequency bins, fi,fo = fi + 1,
a;(fi1) = a;(f2) and consequently au; (fi) = an;(f2). This
is valid for dense FFT grids even in reverberant environments,
by continuity of the Fourier transform. Based on this fact, we
formulate our second ILS minimization criterion

min A (ATl —1y+. . A+ AR (HTnl,, =
{5} f_ {1, Il}sz:l” n(f) Hss=1} (I, {sp=I1}

— A, (f-DIil, —iy—...—Au(Ff~DHnly,_ —mllF
(

14)

where A,,(0) = 07!, by convention.
The criterion of (13) and (14) can be combined into one overall
ILS minimization criterion

Z{IIC An(Iil(s =1y =

{sf}f 16{1 I'}T

— An(f)nl!l{sf:I!}HF + A A (FIi s, =1y + ...
+ An()Mnls = — An(f — DIl 21y —
- An(f - 1)H1!1{3f_1:1!}||%«“ (15)

where X is a weighting factor. When A — 0 (practically, for
A << 1), the combined criterion (15) coincides with criterion 1,
while for A — oo (practically, for A >> 1), (15) coincides with
criterion 2.

The ILS minimization criterion of (15) proves to be satis-
factory for resolving the permutation problem that arises in the
majority of real world BSS problems, as will be shown in the
Experimental Results section. The ILS problem in (15) is NP-
hard, however, a plethora of polynomial complexity approximate
solutions have been developed for it in the multiuser detection
literature. We chose to employ the Successive Interference Can-
cellation - Iterative Least Squares (SIC-ILS) method [6], since it
exhibits the best performance-complexity trade-off in our context,
where the decision vectors are of very high dimensionality (=FFT
length).
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Table |. BSS performance of proposed PARAFAC-ILS method compared to Parra’s method [1] in terms of output SIR and SIR
improvement in dB for each session, speaker pair and utterance (source S1 or S2).

Session I: d1=150cm d2=10cm Session [1: d1=150cm d2=30cm Session 11 d1=100cm d2=30cm
1st pair 2nd pair 3rd pair Ist pair 1st pair 2nd pair
SI | 2 SI L Sil 2 SI | 2 SI L[S Sil MIEYNEAENES
Raw Data Mean SR [| -76 | 76 [ -81 [ 81 | 09 [ -09[[-92] 92 | -60 [ 60 |-03]0.3
Parra’'s Method SR || -6.0 [ 110 [ 67 | 119 | 105] 96 |[-83 [ 128 | 37 | -01 . . . . . . .
SR Improvement || 1.6 | 34 | 148 | 38 | 96 |105| 09 | 36 | 97 | 61| 78 | 72| 68 |-41| 40 |16 | 59 | -16
PARAFAC-ILSSR 781137 13 [117] 29 | 37 [[-24 ] 194 ] 49
SR Improvement || -02 | 6.1 | 94 | 36 | 20 | 46 || 6.8 | 10.2

Experiment:

Tablell. Overall BSS performance of PARAFAC-ILS and Parra’s
methods in terms of average SIR improvement in dB for each
experimental session.

Session PARAFAC-ILS | Parra’s Method
SRimpr. mean | SR impr. mean
I: 150cm-10cm 4.26 7.30
IT: 150cm-30cm 7.17 3.86
I11: 100cm-30cm 9.65 2.10
| Overall | 7.02 | 4.42 |

5. EXPERIMENTAL RESULTS

In our experiments, we used a subset of the PEACH multi-
microphone database [8] using I = 2 loudspeakers as sources
and J = 4 omni-directional microphone as sensors. The mea-
surements were separated into three sessions of three experiments
each, with each session corresponding to a different rectangular
geometric configuration. The loudspeakers and the microphones
were uniformly-spaced on two parallel lines at distance di. The
distance between microphones was d». For session I: di =
150em, da = 10em, for session I1: d1 = 150c¢m, d2 = 30cm and
for session l11: d; = 100c¢m, d2 = 30cm. For all experiments, the
transcription of the utterance played back from each loudspeaker
was the same. The same three sets of speakers were used for
each of the three session giving a total of 9 experiments. For
more information on the measurement setup see [8].

In order to quantify the separation performance, we measured
the average Signal to Interference Ratio (SIR) across microphones
(mean SIR of raw data in Table I) and the SIR for each of the
unmixed signals that are the output of the BSS algorithms. SIR is
measured following the method proposed in [2]. A separate SIR
value were measured for each source (“S1” and “S2” in Table I).

Throughout all BSS experiments using our proposed
PARAFAC-ILS algorithm, the number of time segments the
speech signals were divided into, was set to P = 5. For the
solution of the permutation problem, the two ILS minimization
criteria in Eq. (15) were weighted equally, i.e., A = 1. The
frequency-domain sample autocorrelation matrix estimates were
calculated according to Eq. (9) using 7 = 512 FFT points in
each segment. The performance of our method was compared
with the method presented in [1] referred to as “Parra’s method”
in Table I. The parameters for “Parra’s method” are identical
to the PARAFAC-ILS parameters; in addition, the length of the
inverse channel impulse response in “Parra” was set to Q = 128
as suggested in [1]. In Table I, the raw data SIR is presented
for each experiment and signal source along with the SIR of
the two BSS algorithms. Improvement over raw data SIR is also
shown for the two methods (marked as “SIR Improvement”). The
overall performance of the BSS algorithms in terms of average
SIR improvement in dB for each session is reported in Table II.

It can be seen from Table II, that our method outperforms
the method proposed in [1] in session Il and Ill. Furthermore,
the overall score of the PARAFAC-ILS method is higher by
more than 2.5 dB compared to Parra’s method. In the first
experimental set, however, Parra’s method exhibits better sep-
aration performance. Bearing in mind that the experimental sets
correspond to different geometric configurations, we conclude
that the separation performance is a function of the geometry
of the measurement setup.

6. CONCLUSIONS

We have presented a new two-step approach for the
blind speech separation problem. The new approach employs
PARAFAC to separate signals in the frequency domain and a
context-specific ILS method to resolve the frequency-dependent
permutation ambiguity, which is the key problem in this setting.
Our approach offers guaranteed convergence, unlike [1], and
often considerably better separation performance, measured both
quantitatively and in subjective tests. The link to the conjugate
symmetric PARAFAC model established here, also shows that a
much higher number of signals can be separated than what was
suggested in [1]. In the future, we will investigate the separation
performance of our algorithm as a function of the source-sensor
geometry and the permutation minimization criterion weight .
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