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ABSTRACT

In this paper, we propose a Region-based multi-parametric Vocal
Tract Length Normalization (R-VTLN) algorithm for the problem
of automatic speech recognition (ASR). The proposed algorithm ex-
tends the well-established mono-parametric utterance-based VTLN
algorithm of Lee and Rose [1] by dividing the speech frames of a
test utterance into regions and by warping independently the features
corresponding to each region using a maximum likelihood criterion.
We propose two algorithms for classifying frames into regions: (i)
an unsupervised clustering algorithm based on spectral distance, and
(ii) an unsupervised algorithm assigning frames to regions based on
phonetic-class labels obtained from the first recognition pass. We
also investigate the ability of various mono-parametric and multi-
parametric warping functions to reduce the spectral distance between
two speakers, as a function of phone. R-VTLN is shown to signif-
icantly outperform mono-parametric VTLN in terms of word accu-
racy for the AURORA4 database.

Index Terms— Speech recognition, Acoustic signal processing,
Speech processing.

1. INTRODUCTION

VTLN is a well-established speaker normalization algorithm used to
improve automatic speech recognition (ASR) performance. VTLN
compensates for the effect of speaker dependent vocal tract lengths
by warping the frequency axis of the spectrum magnitude before
computing the cepstrum coefficients [1]. VTLN is applied in the
feature space using warping functions that typically depend only on
a few free parameters [2]. Even with a single free parameter (the
warping factor «) and using very few data for estimation (typically
a single utterance), VTLN performs well for a variety of recognition
tasks. This unique free parameter can be obtained by calculating
formants frequencies [3] or by using a maximum likelihood (ML)
criterion usually in a two-pass speech recognition scenario [1, 4, 5].

Lee et al. [1] proposed an efficient maximum likelihood algo-
rithm for estimating the warping factor for linear frequency scaling.
In [5], VTLN was used during both the training and the testing phase.
In these approaches, a single warping factor and function is used for
each utterance; this function may be linear, piecewise linear or non-
linear, e.g., power [6]. It is well known from the speech analysis
literature, that spectral differences among speakers due to varying
vocal tract length are both phone-dependent and non-linear and can-
not be fully captured by a single warping function and factor selected
on a per utterance basis. Recently, there have been attempts to com-
pute “instantaneous” warping factors, i.e., warping factors on a per
frame basis. Among these frame-based VTLN approaches the most
notable are the MATE framework [7] where spectral warping is ap-
plied to individual frames using a two-dimensional Viterbi decoding

algorithm to estimate the frame-based warping factor and [8] where
the best warping factor is selected based on a normalized codebook.

In this study, the dependence between warping and phones is
investigated. Based on the conclusions drawn from this analysis, al-
gorithms for the division of test utterance’ s frames into regions and
the estimation of an optimal, for each region, warping factor and
function is provided. The two-pass recognition method of [1] is ex-
tended so that region-dependent optimal warping factor and function
can be obtained from a set of candidates, based on an ML criterion.
The proposed region-based VTLN (R-VTLN) algorithm adds little
computational complexity (since factors can be independently es-
timated in each region) and captures most of the improvement of
frame-based VTLN (over utterance-based VTLN).

The paper is organized as follows. In Section 2, the frequency
warping based speaker normalization procedure is described. In Sec-
tion 3, we examine the ability of various warping functions to reduce
the spectral distance between speakers for different phones. The
Region-based VTLN (R-VTLN) algorithm is proposed in Section 4.
In Section 5, results are presented comparing R-VTLN and VTLN
and the paper concludes in Section 6.

2. SPEAKER NORMALIZATION USING
MONO-PARAMETRIC FREQUENCY WARPING

According to [1], for each utterance an optimal warping factor &
is selected from a discrete ensemble of M possible values so that
the likelihood of the warped utterance is maximized with respect
to a given speech recognition model (ensemble of hidden Markov
models) and a given transcription. The transcription is obtained from
a first recognition pass. After the evaluation of the optimal factor, a
warped process,

w—w=g(e)-w, (€3]

is obtained, where w and & are correspondingly the unwarped and
warped frequencies and g is the warping function.

Let X = go(X) denote the sequence of cepstral vectors where
each one of them is warped by the warping function go (). If A de-
notes the parameters of the HMM models and W is the transcription
obtained from an initial recognition pass, the optimal warping factor
(referred as global henceforth) is defined as

Ggip = argmax P(X |\, W) )

After the estimation of the &5, the frequency warped observation
vector X @9 i decoded in a second recognition pass to obtain the
decoded transcription.
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Fig. 1. Intra-speaker variability (+) and averaged MSE between reference and mapped speakers (male and female) before and after warping:
(a) linear, piecewise-nonlinear and power warping functions (b) bi-parametric (2pts) and four-parametric (4pts) warping.

3. ANALYSIS OF WARPING FUNCTIONS

In this section, we evaluate the ability of various warping functions
ga() to reduce the spectral mismatch between speakers. A variety of
mono-parametric and multi-parametric warping functions are evalu-
ated. The reduction of the spectral distance between two instances
of the same phone by different speakers is computed using a Min-
imum Square Error (MSE) criterion. For this purpose, a subset of
the TIMIT training dataset is used comprising of 16 speakers (8
male and 8 female). Speakers are separated into “reference” and
“mapped” speakers (that get “warped” to the reference speakers).
The MSE criterion is defined as follows: Given the unwarped spec-
trum Y (reference spectral envelope computed using a mel-based
ASR front-end), the warped spectrum Z (mapped spectrum) and the
warping function g, the MSE is defined as,

1 K 2
MSE = - ; (Yi — ga(Z,-)> (3)

where K=256, the number of mel spectral coefficients. The fre-
quency warping is performed by taking the middle frame of two
instances of a phone (steady-state), computing the smooth spectral
envelope, and then the optimal warping factor & is computed, so that
the MSE between the warped spectrum g, (Z) and the correspond-
ing unwarped spectrum, Y is minimized, i.e.

N 2
. 1 - _
& = argmine 5 ; (Yz ga(Zz)) 4

Optimization is achieved by a full search in the interval of warp-
ing factors ranging from 0.88 to 1.12, where 1 corresponds to no
warping as in [1] and similarly minimizing the MSE over all pa-
rameters for multi-parametric warping as described next. Frequency
warping is implemented by re-sampling the smooth spectral enve-
lope according to the warping factor &.

The following warping function have been investigated: (i) lin-
ear, (ii) power [6], (iii) piecewise non-linear [9], (iv) bi-parametric
piece-wise linear and (v) four-parametric piece-wise linear. For the

bi-parametric case different factors (oz, and agr) for the low (f < 3
kHz) and high (f > 3 kHz) frequencies correspondingly, are ob-
tained. An optimal global warping factor & is computed and the two
parameters are computed under the constraint |z, — &| < 0.04] and
o — &| < 0.04]. For the four-parametric case the warping fac-
tors correspond to the frequency ranges 0-1500 Hz, 1500-3000 Hz,
3000-4500 Hz and 4500-8000 Hz.

Figure 1(a),(b) show average MSE reduction due to warping for
the warping functions presented above. The linear and piecewise
nonlinear warping function are shown to perform somewhat better
than the power function in (a). Note the relatively large distance re-
duction for vowels, glides and the small reduction for fricatives /f/
and /z/, demonstrating the dependence between frequency warping
functions and phones, especially for the vowels. Note that the aver-
age warping factors (amount of scaling) are higher for vowels than
for fricatives (not shown here). In (b) further reduction of the spec-
tral distance is provided by using two and four-parametric warping
functions. However, the additional improvement over linear warping
was not as large as expected. Finally, note that the average MSE af-
ter warping is similar to the intra speaker variability MSE threshold
(distance between two repetition of the same speaker — shown as a
cross) for some phones.

4. REGION BASED VTLN

In this section, we present the Region-based VTLN algorithm (R-
VTLN) that first categorizes the testing utterance’s frames into re-
gions and then region-specific spectral warping functions and factors
are computed using an ML criterion in order to optimally warp each
region’s testing frames.

Two algorithms are proposed for classifying frames into regions.
Specifically each utterance’s cepstral vectors are classified through
either

e an unsupervised KMeans algorithm (referred as KM hence-
forth) based on cepstral distance, or

e an unsupervised,based on the conclusions from Section 3, al-
gorithm, assigning frames to regions based on phonetic-class



labels obtained from the first recognition pass (referred as Ph-
Cat henceforth).

Their output is a mapping F' between the L frames and their region
index sequence R, F' : | — p. Following the frame classification
algorithm, median filtering is applied on the sequence R. Median
filtering is used to smooth these inherently noisy frame assignments,
based on the continuity criterion.

After the categorization, the spectral coefficients corresponding
to each region are warped according to one of the M factors o and
one of the NV functions g. This results to a multi-dimensional warp-
ing process. The multi-dimensional warping process obtains the P
optimal factors and functions for each region

(03] g1
N (e] " g2
a= g =

ap gp

by maximizing the likelihood of the warped vectors with respect to
the transcriptions from the first pass W and the unnormalized HMM
A,

A W) ®)

The optimal parameters can be determined by

a, g = argmazg,gP(XY

e an exhaustive search over factors and functions for all the re-
gions simultaneously (referred as Sim henceforth) or

e by searching independently for each region, while the other
regions are warped linearly by &g, (referred as Sep hence-
forth).

To summarize during recognition the following two pass strat-
egy is followed:

e through a first recognition pass, a transcription W is obtained
using the unwarped sequence of cepstral vectors X and the
unnormalized model .

e The utterance’s frames are categorized into P regions.

e For each region, an optimal warping factor and function is
evaluated,

e The warped with & and 5 sequence X .3 i decoded in order

to obtain the final recognition result.
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Fig. 2. Linear and Piecewise Linear warping functions.

5. EXPERIMENTAL SETTING AND RESULTS

This section presents the experimental setup and the evaluation re-
sults for the R-VTLN algorithm presented in the previous section.
The training set we used was the AURORA4 clean set (7138 utter-
ances, 128.294 words). The test consists of the AURORA4’s clean
test set (330 utterances from 8 speakers, 5353 words). HMM mono-
phone models with three states per phone and one, three and eight
Gaussians per state were trained. Feature extraction consisted of a
Hamming window 25 ms and a frame update of 10 ms, resulting
in the standard 39 dimensional cepstrum coefficients (MFCC). The
same front-end was used also to compute spectral distances during
the frame classification procedure (KM). For the PhCat classifica-
tion algorithm, regions were selected based on the average warping
factors of phonemes from our analysis. For the two-region case, the
split was between vowel and diphthongs vs. the rest. For the three-
region case, silence is excluded from the second class and a third
class is created just for silence. For the five-region case the regions
are as follows: (1) /ey/, /ayl/, /aal, /ael, fiy/, /ih/, /ah/, (2) fub/, fuw/,
lawl, /aol, lowl, loyl, let/, leh/, (3) /jh/, /ch/, /dh/, /sh/, /th/, /zh/, /m/,
/n/, I/ 1 (4) 1g/, Ix/, Iwl, 1d], /bl Ipl, I/, and (5) /1/, /21, [jl, Is/, Ish/,
/r/ and silence. For all experiments the optimum, for each region,
warping factor is obtained by searching between 0.88 < ay, < 1.12
with step 0.02. The warping functions evaluated are either Linear
and Piecewise-Linear as shown in Fig. 2.

[ Regions [ 2] 31 5 ]
Baseline 48.3
VTLN (two-pass 53.2

R-VTLN KM-Sim | 56.2 - -
R-VTLN PhCat-Sim | 55.6 - -
R-VTLN KM-Sep 56.1 | 55.7 | 55.4
R-VTLN PhCat-Sep | 55.8 | 55.6 | 55.4

Table 1. Word accuracy results (%) evaluated on clean test set of
AURORAA4.

Two Regions Case
GMM per State H 1 | 3 | 8
Baseline 483 | 554 | 56.4
VTLN (two-pass) || 53.2 | 60.1 | 60.7
R-VTLN KM-Sep || 56.1 | 63.5 | 63.9

Table 2. Word accuracy results (%) versus the number of Gaussian
Mixtures per State on monophones HMM.

The experimental results of the proposed R-VTLN are shown
at Table 1. At the same Table, for comparison reasons, the base-
line and the results obtained by the VTLN algorithm of Lee and
Rose [1] are also presented. Results for all four R-VTLN variant
are shown, namely KM and PhCat referring to the frame classifi-
cation method, and Sim and Sep depending on the warping factor
estimation method. The word accuracy (%) is shown for the AU-
RORA 4 clean test set.! We observe that VTLN significantly im-
proves on the baseline and that all variants of R-VTLN outperform

!Given the small difference in performance between the Sim and Sep al-
gorithms, only results for the Sep algorithms are shown for three and five
regions.
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Fig. 3. Distribution of the distance between the obtained by KM-Sim optimal factors and the global factor & gp: (a) For the first region, (b)

For the second region.

utterance-based VTLN over all conditions. There is no significant
difference between the variants of R-VTLN, thus the simplest and
most computationally efficient KM-Sep algorithm is used for further
experimentation. Also the improvement when increasing the num-
ber of regions from two to three is not significant. Results degrade
somewhat when using five regions. This could be due to the lack of
adequate data to estimate multiple parameters (a single utterance is
used here for warping factors and functions estimation) and decreas-
ing returns from using multiple regions.

Next we investigate if these improvements hold for HMM mod-
els of increasing complexity. Results are presented in terms of word
accuracy for the two regions case and the KM-Sep method for the
AURORA 4 task at Table 2, for one, three and eight Gaussians per
state. As expected baseline performance increases significantly. At
the same time the relative improvement of VTLN over baseline de-
creases. However, the improvement of R-VTLN over VTLN remains
consistently the same.

Finally, in Fig. 3 the distributions of the difference between the
region-based warping factors and the global warping factor G4, are
shown for the KM-Sim method. As expected the region factors lie
around the global optimal factor, and take lower values on average
for the first region and somewhat higher for the second region.

6. CONCLUSIONS

In this paper, we have shown quantitatively the dependence between
frequency warping functions and phones. Based on these results we
proposed a region-based VTLN algorithm where, first, frames are
classified in regions and then a region-dependent warping is applied
based on an ML criterion. R-VTLN was evaluated on AURORA4
and it was shown that significant gains over utterance-based VTLN
can be achieved with a small increase in computational complex-
ity. Among the R-VTLN variants the algorithm using k-means for
frame classification and region-independent warping factor compu-
tation was shown to be competitive in both performance and compu-
tational complexity. In the future we will investigate better criteria
for selecting regions and how to combine R-VTLN with other nor-
malization algorithms, e.g., bias removal.
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