
Transition features for CRF-based speech
recognition and boundary detection

Spiros Dimopoulos 1, Eric Fosler-Lussier 2, Chin-Hui Lee 3, Alexandros Potamianos 1

1 Dept. of Electronics and Computer Engineering, Technical University of Crete, Chania 73100, Greece
2 Dept. of Computer Science and Engineering, 2015 Neil Avenue, Columbus, OH 43210-1277, USA

3 School of Electrical and Computer Engineering, 777 Atlantic Drive NW, Atlanta, GA 30332-0250, USA
{sdim,potam}@telecom.tuc.gr fosler@cse.osu.edu chl@ece.gatech.edu

Abstract—In this paper, we investigate a variety of spectral and
time domain features for explicitly modeling phonetic transitions
in speech recognition. Specifically, spectral and energy distance
metrics, as well as, time derivatives of phonological descriptors
and MFCCs are employed. The features are integrated in
an extended Conditional Random Fields statistical modeling
framework that supports general-purpose transition models. For
evaluation purposes, we measure both phonetic recognition task
accuracy and precision/recall of boundary detection. Results show
that when transition features are used, in a CRF-based recogni-
tion framework, recognition performance improves significantly
due to the reduction of phone deletions. The boundary detection
performance also improves mainly for transitions among silence,
stop, and fricative phonetic classes.

I. INTRODUCTION

Hidden Markov Model (HMM)-based speech recognition
systems use state models. Audio features are used to compute
the likelihood of a state for each speech model, but no
exclusive information about phonetic transitions is extracted
from the audio signal [1]. A simple statistical (Markovian)
model of the transition probabilities between states and models
is used. In some cases, the state transition probabilities are
ignored by setting them all equal. Our goal is to explicitly
model the transitions between speech units and states with
features that are extracted directly from the speech signal.

The benefit of including transition information into the state
models has been recognized in past work. In [2], an acoustic
feature set that captures the dynamics of the speech signal at
the phoneme boundaries was introduced in combination with
the traditional acoustic feature set representing the periods
of speech that are assumed to be quasi-stationary. In [3], a
extended hidden Markov model that integrates generalized
dynamic feature parameters into the model structure is de-
veloped and evaluated. Incorporating transition information is
also critical for segmental-based recognition techniques [4],
[5].

In this paper, we use the Conditional Random Fields (CRF)
speech recognition framework that supports the coupling of
transitions between phonetic units and states with features
[6]. We investigate various spectral- and energy-based distance
metrics, as well as, time derivatives of phonological descriptors
and MFCCs as transition features. The extended CRF models
are trained and tested for a phone recognition and boundary
detection task.

II. TRANSITION FEATURES

In order to improve speech recognition performance, one
can model explicitly transitions between adjacent speech units.
Such models can be trained using features from both spectral
and time domains. The time derivatives (deltas) of features
associated with particular states can also be used as indicators
of a change in state (and thus are transition features). We
examine these two classes of features below.

A. Spectral and energy domain

A common feature for this task is a measure of spectral
change. We have already used this feature to adapt our system
to the rate of change of speech signal in [7]. In [8], a similar
feature set was used for automatic segmentation in a speech
synthesis application. We use the Mel-Scale Spectral Magni-
tude to compute the spectral region differences of 20 filterbank
channels. We then combine these sub-spectral differences with
the product rule and equal weights. The spectral change metric
for frame i is computed by the equation (average over three
frames):

D(i) =

∑i+1
j=i−1

K∏
dj(k)

3
(1)

where dj(k) the distance for j-th frame and k-th spectral
region, and K = 20 is the number of spectral regions used.

A similar feature is the Spectral Flux (Fss) [9]. The Spectral
Flux is the difference between the amplitudes of successive
magnitude spectra:

F 0
ss(i) =

K∑

k=0

[Mi(k)−Mi−1(k)]2. (2)

where Mi(k) and Mi−1(k) are the magnitudes of the spec-
tra for frames i and i − 1. Fss measures the amount of
spectral change between successive frames. We derived a
smoothed flux measure by averaging over neighboring flux
measurements:-

Fss(i) =

∑i+1
j=i−1 F 0

ss(j)
3

(3)

Another important group of spectral features is the Spectral
Centroid difference, the Spectral Roll-off difference and the
Zero-Crossing Rate difference [9]. The Spectral Centroid (Css)



is the frame-to-frame difference of the center of mass of power
spectrum

Css(i) =
∑K

kPi(k)∑K
Pi(k)

(4)

where Pi(k) is the power spectrum for frame i and frequency
k, and K is the total number of frequency bins. The Spectral
Roll-off (Rss) is the frequency below which the 95% of the
power spectrum is concentrated. Finally, the Zero-Crossing
Rate (Zss) is the rate of sign changes (positive to negative and
back) of a signal and can be computed in the time-domain.
The (smoothed) time difference of each of these features was
used as follows:

Xssd(i) =

∑
j={1,2}Xss(i + j)−Xss(i− j)

2
(5)

where Xssd() is the difference feature and Xss() one of the
previously described spectral features for frame i.

Finally, the frame-to-frame Energy difference of the signal
was also used for boundary detection. The same regression
formula was used as in (5).

To evaluate the proposed features, a linear classifier which
worked as a detector/rejector of transition regions was used for
each feature. Adjusting the operation point, for the boundary
detector the optimal hits to false positive ratio is reported,
while for the boundary rejector the optimal true negative to
miss ratio is reported in Table I. Overall, spectral change

Features Detector Ratio Rejector Ratio
Spectral change 2.56 5.78
Spectral flux 1.31 14.45
Spectral centroid diff 6.72 2.35
Spectral roll-off diff 4.21 2.94
Zero crossing rate diff 10.16 2.03
Energy diff 3.53 1.24

TABLE I
SPECTRAL AND ENERGY FEATURE EVALUATION

and spectral flux perform better as rejectors of frames as
possible transitions, especially for frames in the same phonetic
class, e.g., STOPÕSTOP. Css, Rss, Zss and energy difference
are better detectors. Best results were obtained for transitions
between VOWÕ{s,z}, {s,z}ÕVOW and nÕ{s,z}
B. Phonological and MFCC deltas

Phonological features have long been used to describe
whether phonological attributes of segments, such as the
consonant manner, place of articulation and voicing, sonority,
or vocalic attributes, are present within a speech frame ([6],
[10] inter alia). These attributes are associated with a group
of phonetic units; each unit can be thought of as a bundle
of features. The relationship between segment boundaries and
phonological features can be complex: while some features can
extend across boundaries (as in the nasalization of vowels),
many features will transition in unison at segment boundaries.
The degree to which features transition in concert depends
particularly on the type of segmental transition.

Deltas of phonological features can be used to estimate the
rate of change of the phonological attributes: High values of
phonological deltas indicate a phonological attribute transition.

We used phonological deltas as transition features, accepting
the risk that we will have a small increase in false positive
detection of boundaries (and consequently in the insertions of
the final recognition task).

The common MFCC features vector was computed with a
frame-rate of 10 msec and a window size of 25 msec. MFCC
deltas is a commonly used group of features that estimate
spectral change in time, in the transformed cepstral domain.
MFCC deltas were also used as transition features.

III. CRF RECOGNITION USING TRANSITION FEATURES

The Conditional Random Field (CRF) framework is a
successful integration tool for combining features that are
highly correlated and of different quality [7], [11]. Recent
advances in the framework allow the inclusion of phonetic
transition boundary clues as transition features. We use the
CRF recognition framework to test our boundary detection
methods.

A. State and transition functions in CRF

CRF models are exponential models that use functions of
the input features and a trainable weighting scheme of these
functions to model the phonetic units. State functions are
associated with states and state features. These are used to
compute the likelihood of being in a certain state. In addition,
transition functions are associated with transitions between
states and transition features. The posterior probability P (y|x)
of a phonetic unit label sequence y given an input feature
sequence x is given by:

P (y|x) ∝ exp
∑

i

(S(x, y, i) + T (x, y, i)) (6)

where
S(x, y, i) =

∑

j

λjsj(y, x, i) (7)

and
T (x, y, i) =

∑

k

µktk(yi−1, yi, x, i) (8)

Each state feature function s(y, x, i) is associated with a
phonetic unit label and an input state feature and also has an
index pointing to a position in the feature sequence. Similarly,
each transition feature function t(yi−1, yi, x, i) is associated
with a phonetic unit transition and a transition input feature
and also has an index in the feature sequence. Trainable
weights λ and µ learn the importance of the association of
each phonetic unit label or transition with the state or feature
function in the final probability calculation.

B. Using transition features to improve the boundary detection

Prior work in CRF phonetic recognition has either ignored
or used a simplified approach in the transition function im-
plementation. In [6], the transition functions were binary,
evaluating to 1 when the phonetic unit label pair matched the
values for the defined function and 0 otherwise. This left out
any transition clues that where present in the input and let
the Viterbi decoding decide which transitions maximized the
final probability of the sequence. In [11], a feature set was



Setup State features Transition features
Baseline 48 Phonological features No transition features
DPhn 48 Phonological features 48 Phonological Delta (1st order)
BndF 48 Phonological features 6 boundary features (see Table I)
DPhn + BndF 48 Phonological features 48 Phonological Delta (1st order)

+ 6 boundary features
DPhn + BndF + DMFCC 48 Phonological features 48 Phonological Delta (1st order)

+ 13 MFCC delta (1st order) + 6 boundary features

TABLE II
DESCRIPTION OF BASELINE AND DIFFERENT EXPERIMENTAL SETUPS

CV Set Core Test Set Ext Test Set
Acc % Train Iters Acc % Corr Del Subs Ins Acc %

Baseline 71.4 25 69.11 4597 941 976 95 70.25
DPhn 72.46 11 70.42 4705 772 1037 118 71.46
BndF 72.02 19 69.53 4652 849 1013 123 70.84
DPhn + BndF 73.02 2 70.77 4773 692 1049 163 71.76
DPhn + BndF + DMFCC 73.72 3 71.51 4825 647 1042 167 72.32

TABLE III
RECOGNITION PERFORMANCE FOR DIFFERENT EXPERIMENTAL FEATURE SETUPS

used for both state and transition features. This feature set
was not optimized for boundary detection, thus allowing only
a small increase in overall recognition performance. Explicit
boundary detection (using a single MLP detector to detect
segmental boundaries) was found to be mildly effective, but an
expensive transition feature for CRF transitions in [12]. In this
work, we examine a wide range of boundary features which
are designed to detect as many boundaries as possible without
adding a considerable amount of insertions to the system.

IV. EXPERIMENTAL SETUP

We used as baseline the CRF recognition system using
48 phonological features as state features and no transition
features as in [11]. We used 4 different setups to compare the
transition features and their combinations. The experimental
setups are described in Table II.

Phonological features were computed using Multi-Layer
Perceptron (MLP) detectors of phonological attributes and
trained using 13-D PLP coefficients plus velocity and accel-
eration. MLPs used 2000 hidden units.

Boundary features were computed as described in section
II. The frame-rate of analysis was 10 msec and the window
size 25 msec. The same window parameters were used for
MFCC calculation.

The delta features where computed with a 7-frame window
size and with the following regression formula:

dt =
∑Θ

θ=1(ct+θ − ct−θ)

2
∑Θ

θ=1 θ2
(9)

with Θ = 3 and ct the static features [13].

V. PERFORMANCE REPORTING AND ANALYSIS

We report two different performance indicators. The first
is the final recognition performance of the setup. This is an
indicator of how well our experimental boundary feature setup
has done in recognizing phonetic units. The second is how well

our setup has done in detecting the transition boundaries of
phonetic units.

A. Recognition results

Our first set of performance indicators are the overall
recognition results of different setups. The recognition is
performed for 48 phonetic units which are reduced to 39
during performance evaluation. We report for 3 sets: Cross
Validation (CV), Core Test and Extended Test as in [11].
Results are shown in Table III. By using the phonological
deltas (DPhn) we got a marginally significant improvement in
accuracy. In contrast, when we used the six boundary features
alone (BndF), the improvement was not significant. Then when
we used both phonological deltas and boundary features (DPhn
+ BndF) we got a better accuracy from the previous two
experiments, as expected. Finally when we used all available
transition features - phonological deltas, boundary features and
MFCC deltas (DPhn + BndF + DMFCC) - we got the best
accuracy. Note that the improvement is due to the significant
reduction in deletions (by over 20%). Also by adding more
transition features, the training process converges with only a
couple of iterations.

B. Boundary detection results

In addition to recognition performance, we can see how
well the CRFs directly detect segment boundaries. We report
the overall boundary detection performance, i.e., the detection
ratio for transitions between two phonetic units in terms of
precision and recall for the extended test set. These results
in Table IV offer an overview of the detector performance.
Two tolerance levels in the detection of transition boundaries
are reported: 10 msec (strict) and 20 msec (normal). One
can see that when using phonological deltas, a slight increase
in recall is achieved with a matching decrease in precision.
When using boundary features, we get an increase in recall
without any loss in precision. When using both phonological



NAS ↔ STOP VOW ↔ FRIC VOW↔ STOP FRIC ↔ SIL STOP ↔ SIL
Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Baseline 0.70/0.69 0.64/0.86 0.92/0.89 0.94/0.93 0.82/0.92 0.95/0.97 0.79/0.75 0.80/0.75 0.66/0.73 0.52/0.49
DPhn 0.71/0.74 0.65/0.87 0.92/0.89 0.93/0.93 0.83/0.91 0.95/0.96 0.78/0.75 0.80/0.77 0.64/0.70 0.56/0.60
BndF 0.71/0.76 0.65/0.86 0.92/0.89 0.94/0.94 0.83/0.91 0.96/0.96 0.80/0.73 0.81/0.78 0.69/0.76 0.57/0.65
DPhn + BndF 0.72/0.71 0.70/0.96 0.92/0.87 0.94/0.95 0.84/0.91 0.96/0.96 0.79/0.72 0.81/0.78 0.65/0.72 0.58/0.68
DPhn + BndF 0.74/0.75 0.71/0.88 0.92/0.89 0.94/0.95 0.84/0.91 0.96/0.97 0.80/0.72 0.83/0.78 0.68/0.73 0.59/0.70
+ DMFCC

TABLE V
EXAMPLES OF BROAD PHONETIC CLASS BOUNDARY DETECTION PERFORMANCE

deltas and boundary features we get a complementary effect,
recall increases significantly with a small decrease in precision.
Finally the addition of MFCC deltas provides a negligible gain
in recall. The detailed performance for transitions between

Tolerance: 10 msec 20 msec
Precision Recall Precision Recall

Baseline 0.89 0.78 0.955 0.855
DPhn 0.875 0.795 0.95 0.88
BndF 0.89 0.795 0.955 0.87
DPhn + BndF 0.88 0.81 0.945 0.89
DPhn + BndF 0.88 0.815 0.945 0.895
+ DMFCC

TABLE VI
OVERALL BOUNDARY DETECTION PERFORMANCE

broad phonetic classes (BPC) are reported in Table V for
the extended test set. The phonetic units are grouped into 5
classes, namely: vowels and semi-vowels (VOW), fricatives
(FRIC), nasals-flaps (NAS), stops (STOP), silence (SIL). De-
tection results (precision/recall) for each experimental setup
and transitions between these BPC are reported for the strict
10 msec window. The first value in each cell of Table V is
the precision/recall ratio of the transition boundary of the left
phonetic class to the right as presented in the table (while the
second value is for the right to left transition). Overall, by
adding transition features into the CRF framework, boundary
detection improves significantly especially among the SIL,
STOP and FRIC phonetic classes. It seems that these phonetic
classes transitions get the highest complementary effect from
the different groups of transition features, so they finally
increase their recall without losing precision.

VI. CONCLUSION

In this paper, we proposed the use of features extracted from
the speech signal to detect the boundaries of transitions be-
tween adjacent phonetic units. In addition, the CRF framework
was extended to incorporate such transition features. Overall,
we showed that spectral distance metrics can help reject
erroneous transition hypothesis, while energy-based metrics
are good detectors of transitions. By incorporating transition
features into CRF-based speech recognition a moderate, yet
significant, improvement in phone accuracy was achieved due
to the reduction of deletions. For the CRF-based phonetic
boundary detection task, recall increased significantly when
transition features were used, especially, for transitions among
the silence, stop, and fricative phonetic classes.

This is a first step towards integrating transition features into
CRF-based speech recognition. A variety of features extracted
from the audio signal can be potentially used for boundary
detection. In addition, one may explicitly create and train
transition models of broad phonetic classes and use their
likelihood scores as transition features, in the future.
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