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ABSTRACT

In this paper, we propose two methods of multiple time-resolution
analysis of speech and their application to Automatic Speech Recog-
nition (ASR). Constant frame-rate multi-scale analysis is proposed
based on a box of multi-scale features. Then a variable rate analysis
is proposed based on the selection of the optimal temporal resolu-
tion on the fly by a properly trained non-linear classifier unit. The
classifier’s parameters are trained using the discriminative method
of Minimum Classification Error (MCE) training. We use the re-
cently proposed Conditional Random Fields (CRF) phonetic recog-
nition system that effectively combines highly correlated features.
Results are reported on a frame-wise classification task and also on
TIMIT phone recognition task. Results show that (i) CRFs can ef-
fectively combine multi-scale features and (ii) MCE trained variable
rate CRFs are competitive with the “box” combination method.

Index Terms— ASR, MCE, Conditional Random Fields, Vari-
able Frame Rate, Multiple Frame Rates

1. INTRODUCTION

The theoretical concept that supports the variable temporal resolu-
tion analysis is that speech is a dynamic phenomenon producing sig-
nals that are sometimes stationary to durations that can reach 100
msec during some vowels, but can also have drastically changing
spectrum in the scale of a couple of milliseconds during stop conso-
nants and phoneme transition segments. Also some phonemes, es-
pecially reduced phonemes, have very short durations. Additionally,
the speaker’s rate of speech can affect the rate at which the speech
signal is changing [1]. The analysis of speech signal according to
the rate of speech and subsequent recognition system adaptation is
a step towards knowledge rich speech modeling [2]. The trade-off
between stationary segments (low temporal variation - higher spec-
tral resolution) and fast changing segments (high temporal variation
- lower spectral resolution) analysis leads to constant temporal reso-
lution analysis typically of 10 msec frame rate and 25 msec window
size. Our goal is to extend this common speech front-end processing
into either a multi-resolution or a variable-resolution speech front-
end. The first one incorporates speech features from different reso-
lutions into a constant frame-rate feature vector. Because the feature
vector’s rate is still constant, it does not require any further modifica-
tions to the available speech recognition engines. The second and the
most promising is the variable-resolution front-end and a subsequent
variable-rate speech recognition system. We no longer process the
incoming speech signal at a constant frame-rate/window size frame-
work, but we vary the analysis according to the rate of change of
speech.
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Different approaches have been employed in order to achieve
this multiple resolution in temporal processing. In [3], multi-stream
Hidden Markov Models (HMM) were used to incorporate different
rate features into the recognition system. In [1], acoustic models
were trained at different rates and then a N-Best list rescoring with a
phone-dependent posterior-like score was used to determine the ap-
propriate model rate for a segment of speech. In [4], words with mul-
tiple dictionary entries for each rate of speech were used, composed
by sub-word units trained at different rates. Finally in [5], frame-rate
selection was used by frame picking using Mel-Frequency Cepstrum
Coefficient (MFCC) feature distance.

In this work, we keep the main concepts of the variable rate
analysis, but also equip our system with a Rate of Speech (ROS)
metric that is computed by a non-linear-combination of the rate of
change of sub-spectral regions and a classifier that selects the op-
timal frame-rate / window size (FR/WS), taking into consideration
the ROS Metric. For the training of the parameters we use the Mini-
mum Classification Error (MCE) / Generalized Probabilistic Descent
(GPD) method [6][7][8]. The method iteratively updates the model
parameters, in order to minimize the classification error rate on a
cross-validation set. For the speech recognition experiments, we use
the recently proposed Conditional Random Fields (CRF) approach
to phonetic recognition [9].

The paper is organized as follows: In Section 2, first a simple
multi-rate system is presented and then our approach to a variable
temporal resolution speech recognition system is analytically pre-
sented. In Section 3 is described implementation of the system. In
Section 4, the experiments and the results are presented and we con-
clude in Section 5.

2. MULTIPLE TEMPORAL SCALES PROCESSING

2.1. Multiple Time Resolution Analysis of Speech

First multiple frame rate / window size speech features were com-
bined and used in a speech recognition task. The multiple time-scale
analysis was achieved by including different temporal analysis fea-
tures in a constant frame-rate box. The resulting feature vector was
calculated at constant frame-rate, but the features inside the box were
computed at different frame-rates. Using this method, we appended
the standard single Frame Rate / Window Size method with a num-
ber of signal parameters from other resolutions. The resulting fea-
ture vector is highly correlated, so a de-correlation step was deemed
necessary. Different combinations of features were tested in order
to find the appropriate one. Results on this method are presented in
Section 4.
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Fig. 1. Variable frame rate speech recognition system

2.2. Variable Time Resolution Analysis of Speech

We propose a functional system that implements the variable frame
rate analysis in Automatic Speech Recognition (ASR). The system
works in a closed-loop in order to select the best frame rate for each
temporal segment of speech. The general concept is shown in Fig. 1.
The main unit of interest is the Frame-Rate Selection Unit (FRSU)
which is trained to select the best frame rate for a specific segment
of speech. The training of the FRSU’s parameters is done using an
MCE discriminative training method. The training is done in two
passes as explained in Sections 2.3 and 2.4.

2.3. Spectral Change Metric

We compute a metric for each subspectral region of a segment of
speech signal that indicates the rate of change for that spectral re-
gion. By using spectral regions we include information about the
rate of change of different regions. The combination of these metrics
forms a global spectral distance metric that models the rate of change
of speech. The rate of change can be computed from a Fast Fourier
Transformation (FFT) analysis and then taking the first-order time
difference for each region. The combination of these partial spectral
change metrics benefits from a non-linear combination method such
as the product rule with weights that can be trained with a Maximum
Likelihood (ML) or MCE method. Non-linear method can detect
changes in minor spectral regions which indicate a transition seg-
ment compared to a rather smoothed result of a linear combination
method. The global spectral distance is computed by the equation:

D=]]d (1)

with w; the trainable weights and d; the distance for the i-th spectral
region. The weighting parameters can be trained in a first-pass MCE
training of the FRSU unit.

2.4. Mapping to Rate Of Speech

Next we want to map the computed distance metric to the optimal
FR/WS pair. The mapping function of choice is a sigmoid with a
few parameters that can be trained in a second-pass MCE training
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with ROS meaning the Rate Of Speech, D the global spectral dis-
tance computed above and a,b,c and d trainable parameters learning
the non-linear mapping from the spectral change distance metric to
the optimal rate of speech. After these two processing steps, we have
a continuous function of the rate of change of speech. This can be
used to select the appropriate FR/WS pair for each speech segment.

2.5. Training of parameters using an MCE method

Now that we have described the transfer function of the FRSU unit,
we can proceed in describing the learning process that we use to train
the free parameters on Eq. (1) and (2). An obvious solution to the
learning process is the ML estimation of the parameters. We include
this estimation method as the baseline in our work. Given the ML
estimated model parameters, we use the MCE training method to
improve the parameter estimates.
The task of MCE training can be divided into three main steps:

a) Choose a discriminant function for the description of the classi-
fication task.

b) Create a misclassification measure to express the classifier deci-
sion process.

¢) Form a cost function that would be an indicator of the classifica-
tion’s success.

All the above quantities must be continuous and differentiable with
respect to the estimated parameters. The classifier can be designed
to have a simple discriminant function of the form:

g;(X;\) = |ROS; — ROSx| 3)

with RO.S; indicating the j-th Rate Of Speech prototype value, and
ROSx the Rate Of Speech Metric computed as shown in Sections
2.3 and 2.4. With the previous formulation of the discriminant func-
tion, we can state the classifier’s decision process as:

C(X) = Ci, if gi(X;A) = min;(g;(X; ) “)

The next step in MCE formulation is the definition of a class
misclassification measure, which in fact expresses the decision rule



in Eq. (4) in a functional form [6]. We choose the rather frequently
used measure:

1
di(X;N) = g;(X; ) = | 37— Do (XN’ )
ke k#j

with 7 a positive smoothing constant and M the number of classes.
‘When the misclassification measure is way below zero, this indicates
a correct classification. Instead when it is positive, it indicates an
incorrect classification.

After we have defined the misclassification measure, we create
the cost/loss function. The function must be continuous and indica-
tive of the classification’s success/error rate. We choose the sigmoid
mapping function which is bound between 0 and 1:

1
1+ exp(—vyd; (X; )

with v the sigmoid’s scaling factor. This loss function is a smooth
and continuous measure of the classification task’s success. When
sample X is correctly classified then the misclassification measure
decreases way below 0 and the loss function approaches 0. When
it is incorrectly classified the misclassification measure indicates the
level of failure and the loss function approaches 1. Now we can
evaluate the classifier’s performance on an unknown sample X using
the following smooth function:

i(X5A) =

Y >1 (6)

UX;A) =D L(X;MUX € Cy) 7)

i=1

where 1() is the indicator function and is 1 when sample X belongs
to class i else is 0.

The next concern is a minimization method for the expected loss
of the classifier during training, in order to estimate the appropriate
values for the free parameters on Eqs. (1) and (2). We want to mini-
mize the expected loss which is:

LG Ap(X)dX  (8)
Xeo,

L) = Ex{I(X:N)} = 3

with X summing over all samples of a training set. We use the GPD
algorithm with parameter space transformations in order to impose
constrains on the free parameters [6]. In practice we minimize the
empirical loss assigning equal probability mass to each sample. The
empirical loss will converge to the expected loss if a training set of
sufficient size is used. The general update equation of the parameter
set we are training () at a given iteration of the process (t) is:

/\t+1 = )\t - EVZ(X, /\)|>\=)\t (9)

with € the learning coefficient. We can use a 2-pass training proce-
dure. In the 1st pass, keep the parameters of Eq. (2) constant and
train the paramaters of Eq. (1). In the 2nd pass use the values found
during 1st pass and train the parameters on Eq. (2). As an example
of MCE/GPD iterative update, the update equation for parameter b
on Eq. (2), when sample X € Cj, is given:

AL(X; \)

0b (10)

bt+1 = bt — &
with
Oli(X; ) _ Ol 9di  9dg:  OROSx an
ob 0d; 0g; OROSx ob
A similar partial derivative chain rule can be used in order to derive
the update equations of the other parameters of the FRSU module.
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3. IMPLEMENTATION

First we computed the spectral change metric. The quantity used to
compute the spectral region differences was the Mel-Scale Spectral
Magnitude, computed by 20 channel filterbank analysis. We run a
first pass recognition task using multiple FR/WS pairs on a cross val-
idation set. We segmented each utterance to 30 msec segments and
labeled each segment using the frame classification results of the first
pass. Every segment that was classified correctly under one FR/WS
pair, it was labeled with its corresponding ROS label (ROS=10 for
FR/WS=10/25msec, etc.). Then an ML training was done using the
distance metric as input and the ROS label as output. The parameters
of Eq. (1) and Eq. (2) were trained using ML estimation. We keep
this mapping as a baseline.

Next we implemented an MCE/GPD embedded iterative training
algorithm and done a re-training of the mapping functions. In the
first pass, we re-train the parameters of Eq. (1). Lower frequencies
are mapped with larger weights and higher frequencies tend to have
smaller weights. In the second pass we re-train the parameters of
Eq. (2). To simplify the training procedure we kept the parameter
a to value 5 and parameter c to value 5 in order to have a uniform
dynamic range of frame rates, i.e, we re-train parameters b and d.
We use a maximum of 30 iterations.

The mapping function that emerged, as the result of this itera-
tive procedure, was used to select the frame-rate on a frame-based
classification task and also the normal recognition task. Frame clas-
sification and utterance recognition results on ML and MCE trained
FRSUs were then compared.

4. EXPERIMENTS

For our experiments we used the TIMIT speech database. Although
the addition of noise seems to favor variable rate systems [5], we
work on clean data. We used a training set, a cross-validation set, a
core test set and an extended (core+rest) test set as described in [9].
For the classification and recognition tasks, we used the HMM and
the CRF frameworks.

For HMMs we used the HTK Toolbox and trained 48 Context-
Indepented (CI) 3-state 16-mixture monophone models on the train-
ing set and performed the multiple rate recognition task on the other
sets. For comparison we performed the same recognition task on
CRF using 48 CI 1-state monophone models. Then a reduction to 39
phonemes on both frameworks was done for comparison.

The features we are using are MFCC with delta and ac-
celeration (MFCC_D_A) combined from different FR/WS pairs,
(fr,ws)={(10,25), (5,12.5), (2.5,6.25)} in msec, as described in sub-
section 2.1, shown as MFCC-MFR in the following tables. We
also report results on MFCC_D_A computed at 10 msec as baseline,
shown as MFCC-10.

Table 1: Multi-Rate Phoneme Recognition Results
Box Combination Method
Method | Feature Core Set Ext Set
group Acc % | Rec % | Acc % | Rec %
HMM MFCC-10 49.08 52.77 | 48.98 53.15
HMM MFCC-MFR | 48.35 53.55 | 49.03 54.50
CRF MFCC-10 47.33 51.87 | 47.22 51.78
CRF MFCC-MFR | 50.94 | 58.11 | 51.00 | 58.49

From Table 1, we can see that HMMs have better performance when
using plain single-rate MFCC_D_A parameters. When using multi-
scale MFCC_D_A features, HMMs cannot integrate effeciently this
extra information. In contrast, the CRFs improve performance by
combining efficiently these highly correlated parameters.



Next we proceed using the CRF framework and combine 44
phonological class posteriors computed from Multi-Layer Percep-
trons (MLP) as described in [9] with single-rate MFCC_D_A and
also with multirate MFCC_D_A. We also include results using ex-
clusively phonological posteriors as a baseline.

Table 2: Multi-Rate Phoneme Recognition Results
Using Phonological Posteriors - CRF Framework - Box Method
Feature group Core Set Ext Set
Acc % | Rec % | Acc % | Rec %
Posteriors 66.72 | 68.68 | 68.16 | 70.32
Posteriors+ MFCC-10 68.25 71.12 | 69.86 | 72.86
Posteriors+t MFCC-MFR | 68.74 | 72.83 | 69.86 | 74.20

The results in Table 2, show the CRFs ability to integrate features
of different quality and time-scale. When Posteriors are merged
with single-rate MFCCs, an improvement is clear. Adding multi-
rate MFCCs improves somewhat the results. The improvement in
recognition is significant.

Next we present the results using the CRF framework for the
variable rate system. We used the classification results from the
cross-validation set to train the FRSU with the MCE method as
described earlier in Section 2. We performed a variable rate ex-
periment on the Core and Ext sets using the ML trained FRSU as
baseline and also the MCE trained FRSU, in order to select the
optimal FR/WS for each 30msec segment. In this experiment, we
used MFCC_D_A features combined from different rates and win-
dows (fr,ws)={(10,25),(7.5,18.75),(5,12.5)} in msec. We report the
results for a frame-based classification task. We also have included
frame-level results from the baseline single-rate MFCC system and
the multi-rate Box method using MFCC and Posteriors+ MFCC. We
have to note here that only MFCC features were computed at mul-
tiple rates, Posteriors were interpolated versions of the constant rate
version. Also the TIMIT phoneme recognition task results are pre-
sented in Table 3.

Table 3: Variable & Multi-Rate Speech Recognition System
Frame Classification Results - CRF Framework
System setup | Features Core % | Ext %
Const-Rate MFCC-10 50.06 48.93
Box Method | MFCC-MFR 54.54 53.85
Post+MFCC-MFR | 70.07 70.70
ML FRSU MFCC 49.81 49.36
Post+MFCC 61.37 61.94
MCE FRSU | MFCC 51.70 51.10
Post+MFCC 72.40 73.11
Table 4: Variable Speech Recognition System
Phoneme Recognition Results - CRF Framework
System | Features Core Set Ext Set
Acc % | Rec % | Acc % | Rec %
ML MFCC 47.88 | 51.47 | 4876 | 51.35
FRSU | Post+MFCC | 62.50 | 65.61 64.57 68.15
MCE MFCC 46.48 | 51.14 | 46.75 51.81
FRSU | Post+MFCC | 67.49 | 70.33 | 68.81 | 72.41

From the results in Table 3 for the frame-based classification
task, we see that the MCE method outperforms the ML method.
Also the box method performs well using multi-rate MFCC features.
Finally the MCE method is the best performer when combining Pos-
teriors and MFCC:s at different rates. Looking at the phoneme recog-
nition results in Table 4, we see the ML method is performing better
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that the MCE method when using MFCCs. MCE performs better
when using Posteriors and MFCCs. Also comparing Table 2 and Ta-
ble 4, we see that the box method performs better than the best vari-
able rate method (MCE) during recognition. This indicates again the
CRFs ability to take the most out of highly correlated features and
also the variable rate system’s weakness of interpreting good frame
classification results to equally good phoneme recognition results.

5. CONCLUSIONS AND FUTURE WORK

This work is the first step towards incorporating multiple temporal
resolution processing features in the speech recognition system.
First we merged features from different time-scales into a static
FR/WS system as part of a multi-rate feature vector. The results
show small but significant improvement compared to the single
frame-rate system. The CRF framework integrates multi-rate highly
correlated features better than HMMs. Then we proposed a func-
tional Variable FR/WS system that uses a ROS Metric from the
non-linear combination of sub-spectral speech regions change rate
and a FRSU to select the optimal frame-rate locally for a segment
of speech. We trained our system using ML and MCE methods.
The MCE method outperforms the ML and the box method in the
frame classification task. In normal recognition task the box method
gave slightly better results than the MCE method. Two reasons
are mainly to blame: (i) the large number of insertions and (ii) the
mapping from frames to state and phoneme sequences.

We are working towards minimizing the error rate of recognition
task, by controlling the insertions of the variable rate system and the
translation of variable rate frames to states and phonemes. A variable
rate system based on phonological posterior features computed at
different temporal resolutions should be implemented for improved
results.
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