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Abstract
Amplitude modulation (AM) and frequency modulation (FM)
in speech signals are believed to reflect various non-linear phe-
nomena during the speech production process. In this paper,
the amplitude and frequency modulation patterns are analyzed
for the first three speech resonances in relation to the funda-
mental frequency (F0). The formant tracks are estimated, and
the resonant signals are extracted and demodulated. The Ampli-
tude Modulation Index (AMI) and Frequency Modulation Index
(FMI) are computed, and examined in relation to the F0 value,
as well as the relation between F0 and the first formant value
(F1). Both AMI and FMI are significantly affected by pitch,
with modulations being more frequently present in low F0 con-
ditions. Evidence of non-linear interaction between the glottal
source and the vocal tract is found in the dependence of the
modulation patterns on the ratio of F1 over F0. AMI is ampli-
fied when pitch harmonics coincide with F1, while FMI shows
complementary behavior.
Index Terms: speech analysis, AM–FM, modulation, funda-
mental frequency, pitch harmonics

1. Introduction
It is well-known that speech production exhibits various non-
linear and time-varying phenomena, due to the nature of the
underlying physics. Several studies report various experimen-
tal results on the vocal tract aeroacoustics, as well as numeri-
cal simulations, that provide strong evidence of such non-linear
phenomena [1, 2]. Furthermore, various other studies have
shown that there exists non-linear coupling between the glot-
tal source and the vocal tract [3, 4, 5, 6].

The AM–FM speech model was proposed as a non-linear
alternative, by modeling the speech signal as a sum of AM–
FM components [7]. Modulation patterns were found to be
speaker, phoneme and context depended [8], making the use
of AM–FM modeling suitable for a variety of speech applica-
tions. Significant improvement in speech recognition accuracy
has been shown in [9], when features measuring AM and FM
percentage extend the standard acoustic feature vector. In [10]
we investigated short-time estimates of instantaneous frequency
and bandwidth as stand-alone feature sets for speech recogni-
tion. Modulation based features have also been proposed for for
speaker identification [11, 12]. Despite the considerable amount
of work on the AM–FM model, and its successful utilization in
different areas of speech processing, there are still various as-
pects related to the presence of AM–FM modulations in speech
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that need to be further investigated. In a recent study, we have
detailed a statistical analysis of amplitude modulation index of
speech resonant signals [13]. In this paper, we extend our anal-
ysis considering both amplitude and frequency modulation met-
rics. Conclusions drawn from this analysis, are of high interest
for speech applications, and especially for speech recognition.

2. AM–FM analysis framework
The speech analysis framework used in this work consists of an
AM–FM model, and set of accompanying tools. The AM–FM
model is a non-linear representation of the speech signal. The
speech signal is modeled as a composition of signals that com-
bine both amplitude and frequency modulation. A filterbank is
used to decompose the speech signal into its resonant compo-
nents. The extracted the resonant signals, are then demodulated
into the instantaneous amplitude and instantaneous frequency
signals utilizing the Teager-Kaiser Energy Operator – (TEO),
and the Energy Separation Algorithm – (ESA) [7, 14].

2.1. The AM–FM Model

The AM–FM model used in this work describes a speech reso-
nance as a signal with a combined amplitude modulation (AM)
and frequency modulation (FM) structure [7, 14]

r(t) = a(t) cos(2π[fct+

∫ t

0

q(τ)dτ ] + θ) (1)

where fc is the “center value” frequency, q(t) is the frequency
modulating signal, f(t) = fc + q(t) the is instantaneous fre-
quency signal, and a(t) is the time-varying amplitude signal.
The speech signal s(t) is modeled as the sum of K such AM–
FM resonant signals s(t) =

∑K
k=1 rk(t)

2.2. Demodulation

The demodulation of an AM–FM signal can be efficiently
achieved employing ESA. The ESA demodulation is based on
the TEO, which is defined via the first and second order deriva-
tives of the signal x(t) as follows

Ψ[x(t)] = [ẋ(t)]2 − x(t)ẍ(t) (2)

The ESA1 instantaneous amplitude a(t) and frequency f(t)
components are defined as [14]

1

2π

√
Ψc[ẋ(t)]

Ψc[x(t)]
≈ f(t),

Ψc[x(t)]√
Ψc[ẋ(t)]

≈ a(t) (3)

1Usually the discrete ESA algorithms (DESA) are used, which are
based on similar equations and the discrete TEO [7].
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Figure 1: (a) Phoneme /ae/ from a male speaker, (b) the F1 in-
stantaneous amplitude, and superimposed the primary and sec-
ondary pulses, (c) the F1 instantaneous frequency, and the F p

w

and F s
w estimates, (d),(e) the corresponding F2 estimates.

2.3. Amplitude Modulation Index

The modulation patterns of instantaneous amplitude signals, as
shown in Fig 1, have a specific structure, that can be exploited
to estimate AMI . This structure of amplitude envelope signals
is modeled using a multi-pulse model [8, 13]. The amplitude
envelope signals a(n) are modeled as

a(n) = u(n) ∗ g(n) ∗ h(n), u(n) =

K∑
k=1

bkδ(n− nk) (4)

where the impulse sequence u(n) is the excitation signal, g(n)
is the impulse response of a critically damped second-order sys-
tem, h(n) is the baseband impulse response of the filter used
for extracting the corresponding resonance signal, and δ(n) is
the Kronecker delta function. The pulse positions nk are com-
puted from an analysis-by-synthesis loop, while the amplitudes
bk have a closed form solution so that the mean square mod-
eling error is minimized. For the purpose of AMI estimation,
the analysis is performed with two pulses per pitch period. The
pulse with the maximum amplitude ap within a pitch period, is
characterized as primary, while the next stronger pulse, if any,
is characterized as secondary. The amplitude modulation index
is defined as the ratio of the secondary to the primary pulse

AMI = as/ap (5)

In Fig. 1 (b),(d) the amplitude envelope signals and the corre-
sponding primary and secondary pulses are shown for the first
and second formant (F1 and F2). The excitation pulses were
computed as described above for a male vowel segment.

2.4. Frequency Modulation Index

The Frequency Modulation Index (FMI) is an estimate of the
degree of divergence of the instantaneous frequency f(t) from
its formant frequency. As we can see in Fig. 1 (c),(e) the in-
stantaneous frequency varies within a pitch period, excluding
the local spikes which are algorithmic side-effects. In order to
capture this variation, we exploit the two-pulse modeling of the
instantaneous amplitude. The primary and secondary pulses are
used to define the primary and secondary regions respectively.
The primary pulse region is defined as the region between the
primary and secondary pulse positions (from np to ns), while
the secondary pulse region is the rest of the pitch period. The
frequency estimation is performed by averaging on the two re-
gions, while incorporating an amplitude weighting to eliminate
the spikes in the raw instantaneous frequency signals, i.e.

Fw =

∑N
k=0 f(k)a

2(k)∑N
k=0 a

2(k)
(6)

The ratio of the absolute difference between the frequency esti-
mates in the two regions over the estimate in the whole period
is used as an estimate of frequency modulation index

FMI =
|F p

w − F s
w|

Fw
(7)

where F p
w and F s

w are the frequency estimates in the primary
and secondary regions respectively.

3. Results
The TIMIT database is analyzed using the methodology de-
scribed in the previous section. The analysis is performed on
both train and test sets, and data is collected for male and fe-
male speakers. For each sentence, the multiband demodulation
formant tracking algorithm (MDA) is applied for the estima-
tion of the tracks of the first three formants (F1, F2 and F3) [8].
Next, the estimated tracks are used to extract the correspond-
ing speech resonant signals, using Gabor bandpass filters along
each track. The statistics of AMI and FMI are collected over
vowel and diphthong regions, and examined in relation to F0.

3.1. AMI and FMI vs F0

In Fig. 2 (a),(b) the mean AMI estimated for the first three
formants is plotted versus F0. The horizontal axis represents
the value of F0 in Hz, which is sampled using bins of length
4 Hz. The vertical axis shows the mean AMI estimated over
all vowel and diphthong regions, per formant and gender. The
mean FMI is shown in Fig. 2 (c),(d). There is a clear decreas-
ing trend of AMI , as well as, FMI estimates for all formants
and both genders. Moreover, the decreasing pattern is very sim-
ilar across formants and across gender.

3.2. Occurrence of amplitude modulation patterns

Fig. 3 (a),(b) show the mean AMI as a function of F0, includ-
ing only the cases where amplitude modulations exist. For the
cases where no amplitude modulation patterns are identified,
there is an absence of a secondary pulse. The plots are signif-
icantly different than the corresponding plots in Fig. 2 (a),(b).
The decreasing trend is to a large degree reduced, or even re-
versed. This shows that the decreasing trend is due to an in-
creased number of zero values for high F0. This is confirmed in
Fig. 2 (c),(d), where the ratio of the number of instances without
secondary pulse over the total instances is plotted vs F0.
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Figure 2: The AMI and FMI estimated for the F1, F2, and F3 resonant signals as a function of F0 value for male and female speakers.
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Figure 3: The AMI versus F0, excluding cases without secondary pulse, for male (a) and female speakers (b). Percent of cases with
absence of secondary pulse are shown as a function of F0 (c),(d).

3.3. The F0–F1 tuning

The mean AMI and FMI estimates for the first formant are
further examined in more detail for both genders. More specif-
ically, they are examined in relation to the ratio of the F1 value
over the F0 value (F1/F0). Fig. 4 (a) shows AMI versus the

F1/F0 ratio. One can see strong peaks for integer ratio values,
both for male and female speakers, which shows that amplitude
modulation is amplified when the formant value coincides with
a pitch harmonic. Fig. 4 (b) shows the corresponding FMI
plots. FMI has the exact opposite behavior, having valleys in
the integer ratio regions, and strong peaks in between.
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Figure 4: The AMI and FMI estimated for F1 versus the ratio
between F1 and F0 values.

4. Discussion
The results show that amplitude modulation is clearly more
prominent in low F0 conditions. This could be due to the fact
that lower F0 allows for more time to achieve complete glot-
tal closure, leading to a more prominent secondary excitation(s)
within the pitch period [15]. The range of AMI and FMI val-
ues is consistent across gender, which suggests that the trends
are related to phenomena arising during the glottal cycle (i.e.,
AM is mostly generated at the source). It is possible that the
secondary excitations, that are reflected as AM patterns, arise
more frequently when the tension of the vocal cords recedes.

It is interesting to note that although, the percent of vowel
instances without modulation increases as a function of F0,
once modulations are present the value of AMI remains rel-
atively constant as a function of F0. Thus, although modula-
tion phenomena are less frequent as F0 increases, the level of
modulation remains equally strong. In fact, for female speakers
and high F0, AMI increases, which may be due to increased
source-tract coupling as F0 (or multiples of F0) approaches F1.

FMI shows little variation as a function of the F0 value.
This suggests that FM patterns are not seriously affected by
glottal source phenomena. This is expected, since FMI mostly
measures variations of the resonant frequencies, which are
mostly affected by the vocal tract shape and the subglottal pres-
sure, and less so by the source characteristics.

Figure 4 shows strong evidence of mode locking between
F0 and F1. More specifically, when the F1/F0 ratio is integer,
i.e. when F1 coincides with a pitch harmonic, AMI is ampli-
fied while FMI is reduced. These complementary tendencies
of AMI and FMI reflect the different phenomena that drive
the AM and FM patterns. The AM patterns are more related
to the glottal source, while FM patterns are related to the vo-
cal tract. The locking patterns between F1 and F0 are strong
indications for non-linear interaction between the glottal source
and the vocal tract. It is possible that secondary sources of ex-
citation are amplified when pitch harmonics are at the vicinity
of the formant frequency. Other studies also report non-linear
phenomena when harmonics and formants coincide [4, 6].

5. Conclusions
The Amplitude Modulation Index (AMI) and Frequency Modu-
lation Index (FMI) are defined and estimated for the first three
formants for vowels and diphthongs. Both AMI and FMI
are significantly affected by F0, as well as its relation with F1.
Modulation patterns are directly related to the pitch value, with
AM being more frequent in low F0 conditions. Moreover, the
tuning of pitch harmonics with the first formant affect both am-
plitude and frequency modulation patterns. Amplitude modula-
tion is amplified when a harmonic coincides with the F1 value,
while at the same time frequency modulation recedes. Overall,
this work targets the better understanding of modulation pat-
terns in speech, their relation to the physics behind non-linear
phenomena, and the relevance of modulation for speech appli-
cations. The conclusions will help us devise new modulation
based features, to target the specifics of each application. Fur-
ther research is needed towards the theoretical modeling of the
physics of speech production, as well as extra experimentation,
that would better explain the observed non-linearities of speech.
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