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ABSTRACT
We propose the use of affective metrics such as excitement, frustration
and engagement for the evaluation of multimodal dialogue systems. The
affective metrics are elicited from the ElectroEncephaloGraphy (EEG)
signals using the Emotiv EPOC neuroheadset device. The affective
metrics are used in conjunction with traditional evaluation metrics (turn
duration, input modality) to investigate the effect of speech recognition
errors and modality usage patterns in a multimodal (touch and speech)
dialogue form-filling application for the iPhone mobile device. Results
show that: 1) engagement is higher for touch input, while excitement
and frustration is higher for speech input, and 2) speech recognition
errors and associated repairs correspond to specific dynamic patters
of excitement and frustration. Use of such physiological channels and
their elaborated interpretation is a challenging but also a potentially
rewarding direction towards emotional and cognitive assessment of
multimodal interaction design.

Index Terms— Affective interface evaluation, Multimodal interac-
tion, Speech interaction, Graphical user interfaces

I. INTRODUCTION
In human communication, affect and emotion play an important

role, as they enrich the communication channel between the interacting
parties. Recently there has been much research interest in the CHI
community aiming at incorporating affective and emotional cues in the
human computer interaction loop. These efforts are known collectively
as affective computing [13].

Multimodal spoken dialogue systems are traditionally evaluated with
objective metrics such as interaction efficiency (turn duration, task
completion, time to completion), error rate, modality selection and
multimodal synergy [12], [11]. The methodology proposed in this
paper is based on the use Electroencephalography (EEG), a rich source
of information which is able to reveal hints of both affective and
cognitive state during an interaction task. In this work, we investi-
gate the use of EEG elicited affective metrics such as excitement,
frustration and engagement for the evaluation of interactive systems
and multimodal dialogue systems in particular. This, not only provides
a more qualitative approach to evaluation, it also provides a better
understanding of the interaction process from the user perspective.
Extracting robust information from such physiological channels is a
challenging but also potentially rewarding task, opening new avenues
for the emotional and cognitive assessment of multimodal interaction
design. To our knowledge, this is the first effort for the affective
evaluation of multimodal spoken dialogue systems using brain signals.

The paper is organized as follows: In Section II a brief introduction
to affective computing is presented. Section III describes the EEG
apparatus used along with the software developed (affective evaluation
studio) to record and analyze the evaluation sessions. Section IV out-
lines the evaluation procedure, the evaluated system and the evaluation
metrics used. Section V presents the affective evaluation results that
complement the use of traditional evaluation techniques. We further
discuss issues of affective evaluation in Section VI. Finally in Section
VII the conclusions and future work are presented.

II. AFFECTIVE COMPUTING
Affective computing studies the communication of affect between

humans and computational systems. It is an interdisciplinary area of

research, spanning disciplines such as psychology (study of affect
and emotion) cognitive science (emotion and memory, emotion and
attention) computer engineering and design (signal processing, affective
detection and interpretation, affective design). In the realm of HCI
and context awareness, it aims at supporting enhanced interaction
experience by utilizing the affective dimension of communication.

The main efforts until now have been concentrated in the fields
of affective detection and emotion recognition1. Affective computing
relies on detection of emotional cues in channels such as speech
(emotional speech), face (facial affect detection) and body gestures.
It also utilizes a number of physiological channels such as galvanic
skin response (GSR), facial electromyography (EMG), blood pressure,
heart rate monitoring (EKG) and pupil dilation. All these channels have
been shown to correlate with certain emotional states such as fear,
joy, surprise. Such signals can potentially provide valuable information
in the course of interface evaluation. Galvanic skin response (GSR)
or skin conductance measures the electrical conductance of the skin,
which varies with its moisture level. For example, GSR is used as an
indication of psychological or physiological arousal since sweat glands
are controlled by the sympathetic nervous system. Previous studies
indicate that GSR may correlate not only to emotional (e.g. arousal
[9]) but also to cognitive (e.g. cognitive load [15]) activity. Using more
than one channels (e.g. facial expression and EKG) is common in the
research community and is referred to as multimodal affect recognition.

Advancements in cognitive and brain sciences has recently made
it possible to add the brain as another source of rich information.
Detection of emotions using brain signals (EEG) is an active research
effort. Using brain signals we can also study other cognitive functions
that are of high significance in the context of interaction design such
as attention, memory and cognitive load.

The human brain is the more complex human organ. The study
and understanding of the brain has benefited from recent advances in
sophisticated equipment such as functional magnetic resonance imaging
(fMRI). Compared to EEG (that is an older method used in brain
studies) most of these methods are very expensive, have low data
transmission rates and/or are not ambulatory. EEG is an established
and mature technology that can be used outside the lab, has high
temporal resolution (which makes it ideal for interaction evaluation)
and is relatively cheap. The main drawback of EEG compared to the
other methods is the relative poor spatial resolution and the high noise
from non cognitive sources called artifacts.

Fig. 1 shows the main areas of the human brain called lobes in
different colors along with their main functionality. EEG measures
the electric potential of the scalp by detecting the summation of the
synchronous activity of thousands or millions of neurons. Using surface
electrodes at various scalp locations it can reliably detect even small
such changes in the cerebral cortex. A large number of electrodes are
usually used in clinical settings to allow for a relative adequate spatial
resolution. The placement of the electrodes follows usually the 10-20
standard to allow for reproducibility across a subject’s measurements
or between subjects. Locations are identified by a letter corresponding
to the lobe (e.g. F for frontal, P for parietal, etc) and a number that
identifies the hemisphere location.

1Note that affect is generally considered to be the expression of emotions
and as such is used in the context of this paper.
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Fig. 1. Human brain areas

The brain activity produces a rhythmic signal which can be divided
in several frequency bands: delta (up to 4Hz), theta (4-8 Hz), alpha (8-
13 Hz), beta (13-30 Hz), gamma (>30Hz) and mu rhythm(8-13 Hz).
Alpha waves are typical of an alert but relaxed mental state and are
evident in the parietal and occipital lobes. Beta waves are indicative
of active thinking and concentration, found mainly in frontal and other
areas of the brain.

EEG studies more relevant to the domain of HCI and affective
computing are those studying emotions and fundamental cognitive pro-
cesses related to attention and memory. EEG emotion recognition has
been an active topic in the last years. There are various representations
of emotions such as the wheel of emotions by Plutchik [14] and the
mapping of various emotions in the arousal-valence space, one of the
most used frameworks in the study of emotions. Arousal is the degree
of awakeness and reactivity to stimuli and valence is the positiveness
degree of a feeling. According to previous studies, indicative metrics of
arousal is the beta/alpha band power ratio in the frontal lobe area. For
valence the alpha ratio of frontal electrodes (F3, F4) has been used, as
according to [5] there is hemisphere asymmetry in emotions regarding
valence e.g. positive emotions are experienced in the left frontal area
while negative emotions on the right frontal area.

User state estimation based on cognitive attributes related to attention
and memory (in addition to emotions) is also of great importance in
the context of HCI research. Memory load, an index of cognitive load
[10] is an important index of mental effort while carrying out a task.
Memory load classification has thus drawn attention from the HCI
research community since it can reveal qualitative parameters of an
interface. In [7] authors report a classification accuracy of 99% for two
and 88% for four different levels of memory load, by exploiting data
from the N-back experiment [6] for their classifier. They also argue
that previous research findings that high memory loads correlate with
increase in theta and low-beta(12-15 Hz) bands power in the frontal
lobe or the ratio of beta/(alpha+theta) powers may not hold always true.

III. AFFECTIVE EVALUATION STUDIO
III-A. EEG device

The EEG device used is the Emotiv EPOC2, a 14 electrode consumer
neuroheadset device (see Fig. 2). The main advantage of the device
compared to clinical grade EEG devices prices (tenths of thousands
of dollars) is the very low price ($700 for research edition) . In
addition, the device is very easy to use and the preparation time is
very short (only few minutes to apply saline solution) compared again
to clinical EEG systems which require enough time and expertise in
order to use. It is also wireless allowing the users to freely move
while interacting. Also, the provided SDK provides a suite of detections
(affective, expressive and cognitive) which allow people without EEG
expertise to integrate them to any application (research edition offers
access to raw EEG signals).

2http://www.emotiv.com

Fig. 2. Evaluation setting. Depicted counter clockwise is the iPhone
device, the GSR apparatus (arduino and breadboard), the Emotiv
device, the audio headset and the PlayStation Eye camera.

The affective suite measures several affective metrics such as frus-
tration, engagement and excitement, while the expressive suite detects
user’s face expressions. The cognitive suite allows the mapping of
different cognitive patterns to different actions allowing EPOC to be
used as a BCI (brain computer interface) [1] device. The main critique
is the low number of electrodes (compared to e.g., 128 electrodes of
clinical grade EEG) and the lower sensitivity/higher noise of EEG
measurements compared to clinical grade EEG devices. Nevertheless,
using advanced noise filtering techniques one can solve most of these
issues. As a result, the device has been actively used recently by game
developers, individual researchers and HCI labs around the world.

III-B. Affective Evaluation Studio
A dedicated tool was developed to collect in real time, data from the

Emotiv device (affective and EEG3) and a video camera. Screenshots
of the affective studio are shown in Fig. 3 for the standard and research
versions of the Emotiv SDK respectively. The tool was used to capture,
record, replay and analyze evaluation sessions of the multimodal
interaction system. A short list of its capabilities include: In capture
mode, it captures data from Emotiv device and a video camera. This
is useful for the examiner to check and resolve any problems such
as the correct contact quality of Emotiv or GSR before starting the
recording of a new session. In recording mode, affective, EEG and
video data are all concurrently saved while also been displayed for the
duration of the interaction session. Again the real time information is
used by the examiner to ensure for the correctness of the recording
sessions. In play mode, data are displayed, annotated and analyzed
(e.g., affective annotations and EEG spectrograms and scalpmaps - see
Fig. 3(b)) offering valuable insights for the course of an interaction
session. The Studio serves as a valuable tool for inspecting in detail
how users interact with the system in real time.

One important problem in EEG analysis is that the recorded signal
might be affected by various artifacts caused by eye movements, eye
blinks and muscle activity. To alleviate this, we have implemented
an EEG artifact removal algorithm using the Independent Component
Analysis (ICA) method proposed in [8].

IV. AFFECTIVE EVALUATION
IV-A. Evaluated System

The evaluated system is built using the multimodal spoken dialogue
platform described in [12] for the travel reservation application domain
(flight, hotel and car reservation). The multimodal system is imple-
mented for both the desktop and smartphone environments (running on
an iPhone device). Our analysis focuses on the form-filling part of the
application.

The user can communicate with the system using touch and speech.
Overall, five different interaction modes are evaluated; two unimodal
ones, namely, “GUI-Only” (GO) and “Speech-Only” (SO), and three

3Although we focus on EEG based affective metrics, GSR data were also
collected during the evaluation.
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Fig. 3. Screenshots of the affective evaluation studio replaying previously recorded sessions. (a) Standard edition. The two main components
depicted are the video and affective plot (see Fig. 4) widgets. The vertical blue line indicates the playing position in the affective data corresponding
to video frame displayed. The user can click on any position of the plot to move in that particular moment in the video stream or vice versa using
the video slider. The two widgets in the right of the video widget display the 14 electrode contact quality and the user face expression widget. (b)
Research edition. Offers additional EEG processing capabilities such as EEG plot (found below affective plot) and single channel analysis plot
and spectrogram (shown when selecting specific channel). It also provides real time scalp plots (next to video widget) which show EEG power
distribution for selected spectrum bands animated through time.

Fig. 4. Example interactive session annotated in the affective plot. Annotation projects the multimodal system’s log file information (turn duration,
input type, etc) onto the affected data of a recorded session. The five affective metrics (excitement, long term excitement, engagement, frustration
and meditation) provided by EPOC are depicted, along with the GSR values (black horizontal line oscillating around 0.4) in the [0-1] scale. The
software automatically annotates the plot showing all interaction turns. A turn is the time period between two thick vertical lines; each dotted
vertical line separates a turn into the inactivity and interaction periods. Only fill turns have background color. That color is red for speech turns
and blue for GUI turns.

fully multimodal ones, namely, “Click-to-Talk” (CT), “Open-Mike”
(OM) and “Modality-Selection” (MS). The main difference between
the three multimodal interaction modes is the default input modality.
For CT interaction, touch is the default input; the user needs to tap on
the “Speech Input” button to override the default input modality. For
OM interaction, speech is the default input modality and the system is
always listening for a voice-activity event. Again the user can override
by tapping anywhere on the screen. MS is a mix of the CT and
OM interaction; the system automatically switches between the two
multimodal modes depending on interface efficiency considerations (the
number of options available for each field in the form). A detailed
description of the interaction modes4 can be found in [12].

IV-B. Participants and Procedure
For this evaluation study, eight healthy right handed graduate uni-

versity students participated. They were all briefly introduced to the

4For a video demonstration see http://goo.gl/rIjS3

nature of the experiment. After wearing the Emotiv headset and the
GSR apparatus, they were asked to take a comfortable position and
instructed to avoid excess movement. All five interaction modes were
used during the evaluation (SO, GO and three multimodal ones CT,
OM, MS). Participants tried all different systems at least once in order
to get familiar with the systems before starting the evaluation scenarios.
For the evaluation scenarios, four different two way trip scenarios were
used, that is a total of 20 (5 systems × 4 scenarios) sessions per user.

IV-C. Evaluation Metrics

The following (traditional) objective evaluation metrics have been
estimated: 1) Input modality usage: we measure the usage of each
input modality as a function of number of turns, and duration of
turns attributed to each modality (touch, speech). 2) Input modality
overrides: the number of turns where users preferred to use a modality
other than the one proposed by the system. 3) Turn/dialogue duration,
inactivity and interaction times: In addition to measuring turn and

45



dialogue duration in total and for each input modality, we also further
refine turn duration into interaction and inactivity times. Inactivity time
refers to the idle time interval starting at the beginning of each turn,
until the moment the user actually interacts with the system using touch
or speech input (interaction and inactivity sum up to turn duration). The
above metrics are also estimated as a function of interaction context
(type of field that is getting filled) and user.

Before conducting the experiments, we verified Emotiv’s affective
metrics against manually annotated ratings created using the FEEL-
TRACE toolkit [4]. For each session the (raw EEG and) affective
metric signals provided by the Emotiv device (engagement, excitement,
frustration) are recorded. An annotated example of the affective signals
is shown in Fig. 4. We proceed to compute the statistics of these signals
per user, input type and interaction mode. Our goal is to investigate
how the affective metrics vary as a function of modality input patterns
(touch vs. speech), interaction mode (SO, GO, CT, OM, MS), user-
initiated modality switches, speech recognition errors and associated
error correction sub-dialogues.

V. RESULTS
V-A. Qualitative Evaluation

To illustrate the results, some example evaluation sessions are
reported first as shown in Fig. 5. The figure shows three evaluation
sessions of participant user 4 including GO, the multimodal system
OM and SO (evaluated in the order plotted). As discussed in Fig. 4,
a turn is the time period shown between two thick vertical lines; each
dotted vertical line separates a turn into the inactivity and interaction
periods. Only fill turns have background color; that color is red for
speech turns and blue for GUI turns. Note that although EEG data
have a constant sampling rate of 128Hz, the affective metrics estimated
by the Emotiv device have an average sampling rate of 12Hz; the
detections are event-driven and their sample rates depend on the number
of expressive and cognitive events. This means that affective metrics
have low temporal resolution compared to EEG. The three affective
metrics more relevant to this study (and showing more meaningful
variation during the interactive session) are frustration, excitement and
engagement.

In Fig. 5(a), a typical GO session is shown. The affective metrics do
not vary much during the interaction with the exception of turns 7 and
8. In turn 7, frustration raises (and then falls) after the user realizes
he entered the wrong value in the previous turn. In turn 8, frustration
raises again because the user was confused about which value to select;
once the correct value is selected, frustration and excitement start
decreasing again. In Fig. 5(b), a typical OM session is shown. Speech
recognition errors occur at turns 4 and 5 (back-to-back) resulting in
elevated frustration levels around these event. Note however, how using
touch input to fix the error in turn 6 results in the rapid decrease of
frustration; this is a pattern found frequently in the whole evaluation
set.

In Fig. 5(c), we show a SO session with many misrecognitions. Due
to many errors, there is significant variability in both frustration and
excitement patterns. In Fig. 5(d) we show one more example sessions
for users 7 (MS session). User 7 has the lowest overall speech word
error rate (WER) and was very confident in using speech. Notice how
smooth is the plot for all the affective metrics and that levels of both
excitement and frustration are low.

V-B. Quantitative Evaluation
Next we examine how affective metrics relate to input type and the

different interaction systems (SO, GO, CT, OM, MS). Table I shows the
mean and standard deviation for the three affective metrics according
to input type (touch or speech); the last row shows the overall (touch
and speech) results. Notice that for both excitement and frustration
speech input has higher levels compared to touch input by 5% and
6%, respectively. This is most probably due to speech recognition errors
causing higher levels of frustration and excitement (as shown previously
in the affective plots and quantitatively below). For engagement on
the other hand, touch input has slightly higher levels (this could be

Table I. Affective metric statistics per input type.
Input type engagement excitement frustration

mean std mean std mean std
Touch 0.79 0.11 0.45 0.19 0.51 0.17
Speech 0.76 0.11 0.50 0.19 0.57 0.19
Overall 0.76 0.11 0.48 0.19 0.56 0.19

Table II. Affective metric statistics per interaction mode/input type.
System engagement excitement frustration

mean std mean std mean std
GO 0.78 0.11 0.44 0.19 0.50 0.15
CT (touch) 0.79 0.11 0.43 0.17 0.50 0.18
CT (speech) 0.78 0.10 0.47 0.17 0.57 0.19
CT (overall) 0.78 0.10 0.46 0.17 0.56 0.19
OM (touch) 0.80 0.11 0.44 0.19 0.52 0.21
OM (speech) 0.76 0.11 0.47 0.17 0.58 0.19
OM (overall) 0.77 0.11 0.46 0.18 0.57 0.19
MS (touch) 0.80 0.12 0.46 0.20 0.54 0.21
MS (speech) 0.76 0.10 0.47 0.17 0.58 0.19
MS (overall) 0.77 0.11 0.47 0.18 0.57 0.19
SO 0.73 0.12 0.54 0.21 0.59 0.20

due to speech being the more “natural” interaction modality). Overall
results, show that engagement levels are higher and have less variance
compared with frustration and excitement.

Table II shows the mean and standard deviation for the three
affective metrics for each of the five interaction modes. For the three
multimodal modes, results are presented per input (touch/speech) and
overall (independent of input type, that is both touch and speech input).
Engagement for SO system is lower compared to all other systems; note
that for all three multimodal modes touch input has slightly higher
engagement compared to speech input as shown in the previous table.
Excitement is much higher for SO compared to GO system (0.54 &
0.44 respectively). Multimodal modes as a mixture of SO and GO
systems have average excitement values lying between these two values
and closer to that of GO. Similarly, for frustration, SO values are
much higher compared to GO system (0.59 & 0.50 respectively) while
multimodal modes have average values of around 0.57.

Table III shows the mean and standard deviation for the three
affective metrics for all eight users. Notice the differences between
users. For example user 7 has by far the lowest excitement and
frustration levels (ASR WER 6%) while user 8 with the higher WER,
has the highest levels for excitement and second highest for frustration.

In Fig. 6, we show the variation of the affective metrics in the neigh-
borhood of speech recognition error and associated repairs. Specifically
in Fig. 6(a) we show average engagement, excitement and frustration,
two turns before and three turns after a speech recognition error. Results
shown are averaged over 266 misrecognitions. As expected, frustration
levels rise when a speech recognition error occurs but falls relatively
quickly over the next two turns (once errors are fixed). Excitement
follows a similar pattern (rise and fall) but with approximately a delay
of one interaction turn, probably associated with the effort required to
repair the error. Engagement stays relatively constant through speech
recognition error events (the slightly lower engagement at the turn
where the error occurs could be explained as the cause for making
this error). Speech error repairs in Fig. 6(b) (either using the speech or
touch input modalities) show complementary patterns. Error fixes are
associated with higher frustration and excitement in the two previous
turns due to the occurrence of the error and associated effort to correct
it. Excitement remains high also for the turn where the error is repaired.
Both frustration and excitement fall quickly following a successful error
repair.

We also investigated the correlation between objective metrics (du-
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Fig. 5. Sample evaluation sessions for user 4: (a) GO, (b) OM, (c) SO, (d) user 7 MS session
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Fig. 6. Variation of affective metrics in the neighborhood of speech recognition errors and repairs: (a) affective metric patterns averaged over
266 speech recognition errors, (b) affective metric patterns averaged over 153 error repairs. Affective metrics are averaged over each interaction
turn (turn 0 corresponds to the error or repair event).

ration, errors, modality usage) and the affective metrics. We observed
weak correlation (approx. 0.2) between frustration and inactivity time,

which could be due to hot-spots in the interaction where both the
cognitive load (associated with inactivity time) and frustration are
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Table III. Affective metric statistics per user.
User engagement excitement frustration

mean std mean std mean std
usr1 0.80 0.09 0.51 0.20 0.61 0.18
usr2 0.74 0.09 0.47 0.15 0.54 0.19
usr3 0.82 0.14 0.51 0.24 0.55 0.20
usr4 0.73 0.10 0.45 0.17 0.54 0.19
usr5 0.79 0.09 0.46 0.19 0.54 0.19
usr6 0.79 0.07 0.46 0.14 0.56 0.17
usr7 0.75 0.10 0.38 0.16 0.44 0.13
usr8 0.71 0.12 0.54 0.21 0.58 0.18

expected to be higher at the same time. In addition, we investigated the
affective patterns for modality switches, i.e., when the user overrides
the default input modality speech or touch. There is no observable
affective pattern during modality switches other than the higher value of
the within-turn variance for all three affective metrics. Overall, speech
recognition errors and repairs seem to have high affective content.

VI. DISCUSSION
Incorporation of biosignals such as EEG in the user experience

design provides a rich amount of data not previously available. Yet the
correct association of these data to underlying emotional or cognitive
states is a challenging endeavor for the research community. The
recent release of the Emotiv device allowed developers and researchers
outside of the neuroscience community to exploit EEG technology.
In the context of HCI research, several demonstrations and research
efforts have emerged mostly towards using the device as a BCI
modality [2] by exploiting either expressive or cognitive events (such
as P300 ERP). Although verification and validation of such efforts is
relatively straightforward, validation of Emotiv’s affective metrics (or
for any other similar metric for that matter) is more difficult because
quantification of emotional states is an open research question. Validity
of affective metrics and their use in complex settings make evaluation
a challenging task. However we have found that: i) a good agreement
between Emotiv’s affective metrics and manually annotated ratings
exists. ii) both excitement and frustration may increase in the case
of speech errors or user confusion (recall affective plot examples) and
that this particular pattern pertrains throughout the dataset. Note that
the affective metrics reported here are averaged over multiple turns
and/or users (reducing the estimation variance). iii) also, as shown
clearly in Section V, on average there are consistent differences in
frustration and excitement levels for different input modality (touch
vs speech), interaction modes (especially for SO, GO) and around
misrecognition/repair events.

VII. CONCLUSIONS
We have shown that the use of affective signals estimated via an

EEG device can provide significant insight in the multimodal dialogue
design process. The affective metrics and physiological signals can be
used in conjunction with traditional evaluation metrics offering a more
user-centric evaluation view of the interactive experience. Specifically
we have investigated the affective patterns of speech recognition errors
and associated repairs. We have shown that speech recognition errors
lead to increased frustration levels, followed by higher excitement
levels. In addition, affective interaction patterns vary significantly by
input modality. Speech input (when compared with touch input) is
associated with higher excitement and frustration (probably due to
speech recognition errors) and lower engagement (probably due to
speech being the more natural interaction modality).

Incorporation of user affective state and other cognitive features such
as attention or cognitive load can prove valuable tools in both the
evaluation and design of interactive systems. Here is a preliminary
list of interesting future research directions: 1) Robust estimation of
affective metrics from the raw EEG signals. 2) Investigate the relation
between error related negativity [3] potentials (ERNs) and speech

recognition errors/repairs. 3) Another important attribute that could be
estimated using physiological signals is cognitive load that relates to
the perceived mental effort. 4) It would be also helpful to integrate
information from an eye-tracker to better estimate visual attention
and overall engagement, and also investigate how attention is divided
between the audio and visual channels in the multimodal system.
Crossmodal attention and multisensory integration are in the forefront
of neuroscience research and are topics of study that could benefit the
multimodal research community too. Overall, this is a first step towards
exploring the relevance of physiological signals and associated affective
metrics in spoken dialogue evaluation and design.
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