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ABSTRACT

Accurate estimation of the instantaneous frequency of speech res-
onances is a hard problem mainly due to phase discontinuities in
the speech signal associated with excitation instants. We review a
variety of approaches for enhanced frequency and bandwidth esti-
mation in the time-domain and propose a new cognitively motivated
approach using filterbank arrays. We show that by filtering speech
resonances using filters of different center frequency, bandwidth and
shape, the ambiguity in instantaneous frequency estimation associ-
ated with amplitude envelope minima and phase discontinuities can
be significantly reduced. The novel estimators are shown to per-
form well on synthetic speech signals with frequency and bandwidth
micro-modulations (i.e., modulations within a pitch period), as well
as on real speech signals. Filterbank arrays, when applied to fre-
quency and bandwidth modulation index estimation, are shown to
reduce the estimation error variance by 85% and 70% respectively.
Index Terms: speech analysis, time-frequency analysis, filterbank
arrays, instantaneous frequency, micro-modulations

1. INTRODUCTION

Speech signals are non-stationary due to the rapid movement of the
articulators and the complex dynamics of airflow in the vocal tract.
Even for the so-called steady-state phonation, various second-order
phenomena are observed in speech resonances that cannot be pre-
dicted by the linear source-filter model as derived from the simplified
1-D Navier-Stokes equations [1, 2, 3]. Deviations from the model
are often manifested as micro-modulations in the amplitude enve-
lope and instantaneous frequency of speech resonances often within
a single pitch period. Some of these phenomena are well-known and
have been documented over the past decades, e.g., secondary exci-
tations at glottal openings, bandwidth modulation between the open
and closed phase [4]; others are still under investigation. Some of the
causes of such micro-modulations have been identified as the excita-
tion of secondary resonator modes at the vocal folds, the non-linear
dynamics of the airflow, as well as the non-linear source and vocal
tract interaction (especially during the open phase).

A set of tools has been devised by the speech analysis research
community to explore and analyze such phenomena. The need for
such tools goes beyond the scientific curiosity of better understand-
ing speech production; they are also motivated by speech applica-
tions such as speech synthesis, e.g., for pitch synchronous analysis,
it is important to accurately identify primary excitation instants (and
if possible, secondary excitations) and speech/speaker recognition.
The main approaches for the estimation of excitation instants and

associated micro-modulation in speech resonances are: (i) inverse
filtering, where the effect of the vocal tract is assumed to be that
of a linear filter that is estimated and removed to obtain the excita-
tion signal, (ii) instantaneous phase or group delay processing [5]
where the excitation instants are identified via the phase disconti-
nuities they create in the instantaneous frequency estimates and (iii)
analysis by synthesis [6]. Once the excitation instants have been
identified, micro-modulations (amplitude, frequency, and bandwidth
modulations within a pitch period) can be measured. These esti-
mates are associated with specific frequency ranges (often focusing
just on the speech resonances) and thus a filterbank is also employed
here. Instantaneous amplitude and frequency signals can be used for
formant frequency and bandwidth estimation [7, 8], or for directly
measuring modulations in speech resonances [9, 6, 10].

An important factor that hinders accurate instantaneous fre-
quency estimation in a speech resonance is the phase discontinu-
ity at excitation instants. Such discontinuities appear as single or
double spikes in the instantaneous frequency estimated after phase
unwrapping and differentiation. The discontinuities are additionally
being band-passed in order to isolate a speech resonance, spilling
their effect in time and increasing the variance of (instantaneous and
short-time) frequency and bandwidth estimates. We propose to use
a set of filters that are varied in center frequency, bandwidth, and
shape in order to reduce the effect of time-frequency estimation un-
certainty and significantly improve the statistics of estimators. The
process is motivated by auditory cognition, where auditory filters
are averaged across frequency and adapted depending on the audio
conditions [11].

This work builds on our recent studies on measuring amplitude
and frequency modulations in speech resonant signals [6, 9]. The
main contribution of this paper is a novel technique for processing
instantaneous amplitude and frequency signals using filterbank ar-
rays in order to reduce the effect of phase discontinuities. Here, we
focus on frequency and bandwidth modulation indexes that quan-
tify the micro-modulation depth. We show that applying the fil-
terbank array technique to the frequency and bandwidth estimation
results in unbiased estimators with reduced error variance. More-
over, the proposed method can be used for a variety of problems
that require accurate mean instantaneous frequency estimates, such
as formant and pitch tracking [7] or harmonic analysis [12]. This
work is also motivated by recent research on time domain process-
ing of speech. More specifically, instantaneous frequency and band-
width modulation features have been successfully applied for speech
recognition [13, 10, 14, 15], speaker identification [16, 17, 18].
This reveals that modulation patterns carry useful information for
both speaker/speech recognition, and can also be robust to noise
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[19, 10, 15, 20]. Our goal is to enhance the AM–FM analysis tools
in order to improve the use of modulations in speech applications.

The remainder of the paper is organized as follows. In Sec-
tion 2, the frequency and bandwidth estimators based on the AM–
FM model are described. The Frequency Modulation Index (FMI)
and the Bandwidth Modulation Index (BMI) are also introduced.
Section 3 describes the proposed filterbank array technique. Sec-
tion 4 reports on the performance of FMI and BMI metrics using
the baseline estimators. Section 5 then compares the performance of
FMI and BMI using the novel filterbank array estimators. Finally,
Section 6 concludes this work.

2. FREQUENCY AND BANDWIDTH ESTIMATORS

This work is motivated by the AM–FM model [21] that describes a
speech resonance as a signal r(t) with a combined amplitude modu-
lation (AM) and frequency modulation (FM) structure

r(t) = a(t) cos(2π[fct+

∫ t

0

q(τ)dτ ] + θ) (1)

where fc is the “center value” frequency, q(t) is the frequency mod-
ulating signal, and a(t) is the time-varying amplitude. The instanta-
neous frequency signal is defined as f(t) = fc + q(t). The speech
signal s(t) is then modeled as the sum of N AM–FM signals. The
AM–FM signal can be demodulated into a(t), f(t) using the energy
separation algorithm or the Hilbert transform demodulation algo-
rithm. The speech resonant signals are extracted via filtering. Usu-
ally, the Gabor filter is preferred because it is maximally smooth
and optimally concentrated both in time and frequency domain. The
resulting band passed signals are further demodulated into instanta-
neous frequency and amplitude components. The whole process is
known as Multiband Demodulation Analysis (MDA) [22].

Short-time analysis is performed on the instantaneous amplitude
and frequency signals in order to extract three main estimates: am-
plitude, frequency and bandwidth. The time-frequency distribution
of amplitude, frequency and bandwidth estimates are often used as
features for speech recognition and speaker identification, as well
as in other speech processing applications. Amplitude is an energy
measure which can be derived directly via short-time integration of
the squared instantaneous amplitude A =

∫ t0+T

t0
a2(t)dt, where

t0 is the starting time index, and T is the integrating period. For
frequency estimation, amplitude weighting is performed in order to
eliminate the effect of low energy singularities, as follows:

F =

∫ t0+T

t0
f(t)[a(t)]2dt∫ t0+T

t0
[a(t)]2dt

. (2)

F is an estimate of the mean frequency in the analysis frame and a
good estimator of the formant frequency. Moreover, it is equivalent
to the first spectral moment (frequency domain estimate). The band-
width of an AM–FM signal is usually defined using two components
to account for both instantaneous frequency and amplitude envelope
variations [23, p. 534], as follows:

[B]2 =

∫ t0+T

t0

[
(ȧ(t)/2π)2 + (f(t)− F )2a2(t)

]
dt∫ t0+T

t0
a2(t)dt

. (3)

The amplitude component is the term (ȧ(t)/2π)2, and can be
thought of as the AM contribution to the bandwidth[

BAM
]2

=

∫ t0+T

t0
(ȧ(t)/2π)2dt∫ t0+T

t0
a2(t)dt

(4)

It describes the decay rate of the amplitude envelope which is closely
related to the formant bandwidth [24].

2.1. Estimating frequency and bandwidth modulations

In this work we focus on micro-modulations of the instantaneous
frequency and bandwidth signals within a pitch period. More specif-
ically, the Frequency Modulation Index (FMI) and the Bandwidth
Modulation Index (BMI) are introduced for instantaneous frequency
and bandwidth respectively, as metrics for their modulation depth,
i.e. the degree of divergence from their average level.

FMI is an estimate of the degree of divergence of the instanta-
neous frequency f(t) from its mean value fc (roughly corresponding
to the formant frequency). To quantify this, we define two regions
in the pitch period, the primary region roughly corresponding to the
closed phase and the secondary one, roughly corresponding to the
open phase of phonation. Identifying the primary and secondary re-
gions is beyond the scope of this paper – for a method that uses
an analysis-by-synthesis loop see [6]. Eq. (2) is used to estimate
Fp and Fs, i.e., the weighted mean instantaneous frequency esti-
mate for the primary and secondary region. FMI is hence defined as
FMI = |Fp − Fs|/F . The presence of a spike in the instantaneous
frequency signal in one of the two regions results in unbalanced es-
timation errors between Fp and Fs. This does not only affect the
estimation, it also increases the variance of the estimator (see Sec. 4).

BMI is defined in a similar way. The same partition of the pitch
period is used and the bandwidth is estimated separately for the pri-
mary and secondary regions. The relative difference between the two
estimates is used as the modulation index. In order to investigate the
effect of the proposed techique on instantaneous amplitude estimate,
we focus only on the AM contribution to the bandwidth and define
BMIAM = |BAM

p −BAM
s |/BAM using the BAM definition in Eq.

(4) to estimate bandwidth separately for the primary and secondary
region of a pitch period. The estimate of the instantaneous amplitude
signal is usually more stable and does not exhibit spike-like singular-
ities, however, subtle differences in its dynamics can have significant
effect on bandwidth estimation.

3. FILTERBANK ARRAYS

A variety of techniques has been used to eliminate or filter-out the
spikes in the f(t) signal associated with phase discontinuities and
a(t) minima. These include:

• Post-processing on the f(t) signal including peak-to-peak
pruning, median filtering, smoothing [19].

• Alternative estimates of the mean frequency such as, pseudo-
instantaneous frequency [10], the model-based approach in
[25] or heavier amplitude envelope weighting in (2), (3) [19].

Here instead, we propose robust estimation of the instantaneous fre-
quency and amplitude signals using filterbank arrays. The term ro-
bust refers to robustness to phase discontinuities and energy signu-
larities, and should not be confused with noise robustness. The latter
will be investigated in future work.

We start from a baseline MDA scheme, where a resonance sig-
nal r(t) is isolated via filtering and then demodulated to a(t) and
f(t) signals. Next, for each filter with impulse response hn(t) and
center frequency fl, l = 1..L, we create an array of 2K + 1 fil-
ters by varying its center frequency in the vicinity of fl as follows:
fl,k = fl + k∆f , with k = −K... − 1, 0, 1...K and ∆f being the
distance (in frequency) between adjacent filters. Alternatively, one
could also modify the bandwidths and shapes of the filters. We have
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experimentally observed that varying the center frequency of the fil-
ter provides the best performance (reduction in estimation variance).
Then we proceed to filter and demodulate the resonance signal via
each of the filters in the array and obtain a time-frequency (TF) dis-
tribution of amplitude envelopes a(t, k) and instantaneous frequency
f(t, k) signals for each resonance. The TF distributions are then
combined to obtain robust estimates of the short-time resonance fre-
quency and bandwidth either (i) by simply averaging their outputs in
time before estimating F , i.e.,

FA =

∑
k

( ∫ t0+T

t0
f(t, k)[a(t, k)]2dt

)∑
k

( ∫ t0+T

t0
[a(t, k)]2dt

) (5)

(the bandwidth estimator BA is defined in a similar fashion) or (ii) by
using the variance of the instantaneous frequency estimates vf (t) =
Ek{(f(t, k)−Ek{f(t, k)})2} as an additional weighting in (2), (3),
leading to the following generalized estimator:

Fn,m =

∫ t0+T

t0
f(t)[a(t)]n[vf (t)]

−mdt∫ t0+T

t0
[a(t)]n[vf (t)]−mdt

(6)

where n, m are non-negative integers. For n = 2, m = 0 we get the
estimator in (2), while for n = 0, m = 1 we get the inverse variance
weighting estimator. Finally, for n = 2, m = 1 we get the inverse
variance amplitude square weighted estimator.

We expect the instantaneous frequency estimates averaged over
the filterbank array to be robust to phase discontinuities at excita-
tion instants. The argument is that phase discontinuities (and the
corresponding area under the pulses in f(t) estimates) at primary
excitation instants roughly correspond to the difference between the
phase of the formant frequency and the phase of the highest energy
harmonic in the speech resonance (for a theoretical explanation see
the difference between unweighted and weighted estimates of short-
time frequency in [7]). An experimental demonstration of this phe-
nomenon can be found in Section 5.2 of [22]. Moving around the
center frequency of a filter with a shaped pass-band (e.g. Gabor) in
the vicinity of the formant leads to a modified formant frequency es-
timate, while the highest energy harmonic usually remains the same.
Thus, the amount of phase discontinuity and the shape/direction of
spikes is different in each f(t, k) (see Fig. 1). As a result, averaging
f(t, k) over an array of filters centered in the formant vicinity can
reduce the effect of phase discontinuities and lead to more robust
instantaneous and short-time frequency estimates.

4. FMI AND BMI ERROR ANALYSIS

Next, we investigate the frequency FMI and bandwidth BMIAM

micro-modulation estimation errors as a function of the follow-
ing parameters: 1) amount of frequency or bandwidth micro-
modulation, 2) fundamental frequency (F0), 3) formant proximity,
4) center frequency of the Gabor band-pass filter fl and 5) the band-
width parameter α of the Gabor band-pass filter. The bias and stan-
dard deviation of the FMI and BMIAM estimators are computed
on synthetic speech signals that are generated using a cascade for-
mant synthesizer. Frequency and bandwidth modulations are added
to the speech resonances by appropriately modulating the parame-
ters of the resonators in the first half and second half of the pitch
period using step functions. Gabor filtering followed by Hilbert de-
modulation is used to estimate the a(t), f(t) signals for each res-
onance. The parameters used are: F0 = 120 Hz, (F1, F2, F3) =
(500, 1500, 2500) Hz, (BW1, BW2, BW3) = (70, 100, 100) Hz,

Table 1. Mean and standard deviation of error of FMI/BMI estima-
tors for various parameter specifications.

Mean Error STD of Estimator
Param.–Value FMI BMIAM FMI BMIAM

(×10−4) (×10−2) (×10−4) (×10−2)
FMI = 0.02 -6 73
FMI = 0.05 -7 72
FMI = 0.1 -23 73
BMI = 0.2 7 18
BMI = 0.5 5 15
BMI = 1 3 9
F0 = 120 Hz -13 5 74 14
F0 = 180 Hz 9 8 263 55
F0 = 240 Hz -64 33 472 75
F2 = 900 Hz 141 75 877 76
F2 = 1200 Hz 42 -6 117 21
F2 = 1500 Hz -9 6 71 14
fl = 1400 Hz -18 0 96 16
fl = 1500 Hz -9 5 72 16
fl = 1700 Hz 20 -6 79 16
α = 800 -36 11 210 35
α = 1000 -9 5 72 14
α = 1200 -4 1 21 4

FMI = 0.05, BMIAM = 0.5. Gabor filters with center frequency equal
to the formant and bandwidth parameter α = 1000 are used.

Table 1 summarizes the performance of the estimators for each
of the parameters. Specifically, we compute the mean error (ME)
and the square root of the mean square error of FMI/BMI. The for-
mer measures the bias while the latter measures the standard devi-
ation (STD) of each estimator. The ME and STD are reported for
three characteristic values of each parameters under investigation.
Errors were averaged over 1000 experiments (the synthetic signal
parameters for each experiment are selected to vary randomly within
±10% of the values specified above). The baseline Eqs. (2),(4) were
used to estimate F and B. Estimation was performed in the mid-
dle third of the primary region for Fp, BAM

p and the middle third
of the secondary region for Fs, BAM

s using a single pitch period.
When using the whole primary and secondary regions the error STD
is approximately three times higher, but the relative performance of
the estimators as a function of the parameters shown here is similar.
Primary and secondary regions were defined as the first and second
half of the duration between two adjacent excitation pulses.

Results presented in the table show that:

• High FMI values can be somewhat underestimated due to
the effect of the band-pass filter (see for example ME for
FMI = 0.1 and α = 800); this is less of an issue for BMIAM .

• The variance of both F and B estimation increases as a func-
tion of F0 since time-frequency resolution within the pitch
period is reduced with fewer samples to estimate from.

• When two formants approach closer than 300-500 Hz (e.g.,
see F2 = 900 Hz closing on F1 = 500 Hz) cross-
modulations appear in the F and BAM estimates from neigh-
boring formants causing large biases and increased estimation
variance.

• Moving the band-pass filter center frequency in the proxim-
ity of the formant frequency does not significantly bias the
estimates or increase estimation variance.
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Fig. 1. Average (red-dotted) f(t) estimates using an array of eight
filters vs. various f(t) estimates using a single filter (filter locations
ranging from 80% to 120% of formant value) for (a) synthetic reso-
nance signal with 5% step-wise FM modulation and (b) real speech
resonance F1 of phone /aa/ instance.

• Smaller band-pass filter bandwidths cause undershoot for
FMI (e.g., α = 800), while BMIAM is overestimated.

These trends have been verified on a large range of values for the
parameters under investigation.

5. PERFORMANCE COMPARISON OF FILTERBANK
ARRAY ESTIMATORS

Next, we investigate the performance of the average FA and in-
verse variance weighted frequency estimators Fn,m (using filterbank
arrays), as well as their instantaneous bandwidth counterpart BA.
Specifically, we compare the performance of FA, BA with that of
F , B on synthetic and real speech resonances (see Fig. 1), as well
as compute the bias and standard deviation of FMI, BMI using fil-
terbank arrays (see Table 2).

Fig. 1(a), (b), shows various instantaneous frequency f(t) sig-
nals (blue-dotted) estimated via multi band demodulation (Gabor fil-
tering, Hilbert demodulation) from 20 different filters that are cen-
tered within ±20% from the formant frequency (α = 1000). The
average <f(t)>k estimate of 8 filters (used in FA) is also shown

Table 2. Mean and standard deviation of error using baseline
(F , BAM ) and filterbank array (FA, BAM

A , Fn,m) estimators.
Mean Error STD of Estimator

Estimator FMI BMIAM FMI BMIAM

(×10−4) (×10−2) (×10−4) (×10−2)
F , BAM -15 7 74 21
FA, BAM

A -3 -6 10 6
F0,1 -14 – 87 –
F2,1 -9 – 73 –

(red-dotted). Fig. 1(a) shows results for a synthetic signal F0 = 120
Hz, (F1, F2, F3) = (500, 1500, 2500) Hz, with frequency micro-
modulations of ±50 Hz in F2 (step function within a pitch period). It
is clear from the figure that the <f(t)>k estimate accurately tracks
the FM in F2, and that averaging effectively filters out most of the
erratic spikes associated with phase discontinuities at excitation in-
stants. Similarly, Fig. 1(b) shows the results for the first resonance
of an instance of the phoneme /aa/. Again, averaging significantly
improves estimation; the frequency modulation in the first formant
between the open and closed phonation phase is now clear. Overall,
moving the Gabor filter in the proximity of the formant frequency
does not significantly bias the FA estimate or increase its estimation
error variance (see also previous section), while the actual estimates
f(t) do change. Averaging f(t) can lead to significant reduction of
estimation error (and variance), as shown graphically in Fig. 1.

Table 2 summarizes the bias and estimator standard deviation
when computing FMI and BMIAM in synthetic speech resonances
using estimators F , FA, Fn,m and B, BA. The synthetic signals
used have the same parameters as in the previous section. Results
are averaged over 1000 examples (variants obtained by varying the
value of the parameters within ±10 of these values) and computed
from the middle third of the primary and secondary regions of a pitch
period. Ten filters spaced within ±20% of the formant frequency are
used to estimate FA, BA, Fn,m. The reduction in estimation bias is
significant for FMI when using filterbank arrays and estimator FA.
The reduction in the standard deviation of the estimator is even more
impressive; seven times for FMI and three to four times for BMIAM .
The inverse variance estimates F0,1, F2,1 do not achieve a large re-
duction in FMI estimation bias or STD. Overall, averaging the in-
stantaneous frequency and amplitude over filterbank arrays can pro-
duce more robust F , B, FMI and BMI estimates, and significantly
reduce estimator variance.

6. CONCLUSIONS

We have shown that averaging instantaneous amplitude and fre-
quency signals across filterbank arrays significantly improves the
robustness to phase discontinuities of the frequency and bandwidth
estimators, mainly by reducing estimator variance. We have demon-
strated this both on synthetic and real signals for measuring micro-
modulation in speech resonances. Filterbank arrays signifincantly
improve the frequency and bandwidth modulation index estimation;
the estimator error variance is reduced by 85% and 70% respec-
tively. Future work should include a more detailed theoretical anal-
ysis of filterbank arrays and their connection with human auditory
cognition, fast and efficient implementations of array filtering, com-
bination of FA, BA estimates with various weighting-based, model-
based and post-filtering schemes to further improve estimation ac-
curacy, as well as deriving enhanced micro-modulation features for
speech applications.
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