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Abstract

We investigate acoustic modeling, feature extraction and fea-

ture selection for the problem of affective content recognition

of generic, non-speech, non-music sounds. We annotate and

analyze a database of generic sounds containing a subset of the

BBC sound effects library. We use regression models, long-

term features and wrapper-based feature selection to model af-

fect in the continuous 3-D (arousal, valence, dominance) emo-

tional space. The frame-level features for modeling are ex-

tracted from each audio clip and combined with functionals to

estimate long term temporal patterns over the duration of the

clip. Experimental results show that the regression models pro-

vide similar categorical performance as the more popular Gaus-

sian Mixture Models. They are also capable of predicting ac-

curate affective ratings on continuous scales, achieving 62-67%

3-class accuracy and 0.69-0.75 correlation with human ratings,

higher than comparable numbers in literature.

Index Terms: emotion recognition, audio content processing,

affective modeling, regression models

1. Introduction

Generic unstructured sound clips are pervasive in multimedia

and contribute significantly to the sensory, semantic and affec-

tive interpretation of content. Recently, generic audio has re-

ceived significant research interest, especially for the task of

classification to semantic categories [1] and the associated task

of audio event detection [2]. Such sound clips can also have sig-

nificant affective content [3], which can be important for the af-

fective interpretation of audio streams (especially authored mul-

timedia content such as movies and video clips). Ambiances

and sound effects can be used by a film director to convey the

desired emotions. Using source separation and handling the re-

sulting audio streams individually has also been proposed [4].

Generic sounds provide context that helps better understand the

scene. In that regard, knowing and measuring the affective rat-

ings provides valuable information to autonomous robots and

content retrieval systems. Despite this potential importance, af-

fective content analysis and modeling of generic audio is a little-

researched problem mainly due to the diversity of the content

and the lack of comprehensive annotated databases.

Among the main hurdles in the analysis and modeling of

generic audio are its inherent diversity both in terms of gen-

eration source (nature, city, human, animal, machine etc.) and

acoustic characterization (noise, chirps, cries, harmonic etc.), as

well as, its lack of structure (unlike music). As a result, a large

database is needed to adequately characterize such diverse con-

tent. The only affectively annotated generic audio corpus avail-

able is IADS [5], however its’ limited size (167 clips) fails to

capture the richness of generic audio and make it hard to ap-

ply machine learning methods. In this paper, we present the

affective annotation and analysis of a comprehensive collection

of 1472 clips from the BBC sound effects library [6] that can

serve as a stepping stone for future research in the field.

Modeling of generic audio for semantic classification and

audio event detection usually employs generic features and

models, such as Mel Frequency Cepstral Coefficients (MFCCs)

and Gaussian Mixture Models (GMMs). There is virtually no

research in the area of affective classification of generic au-

dio apart from the exploratory work in [3], which did not fo-

cus on classification, so we turn to the affective literature for

feature extraction and modeling of speech and music. Speech

emotion is the most researched area in the audio emotion field,

and a wide variety of features, methods and datasets have been

proposed [7]. However, most of the systems participating in

INTERSPEECH 2009 emotion challenge [8] seem to prefer

generic features and modeling methods. Although, GMMs and

MFCCs are also popular for music tagging and affect recogni-

tion [9], alternative features and models have proved more suc-

cessful in music processing. Statistics of the short-time spec-

trum, chromas, Gaussian super vectors, music key-related fea-

tures, and spectral novelty features have been successfully com-

bined with MFCCs for music processing tasks as outlined in

the MIREX challenges, e.g., [10]. Also regression models have

recently emerged as popular alternatives to GMMs for music

modeling [11, 12].

In this paper, we investigate a large set of (mostly) frame-

based features from the speech and music processing literature

and combine them via functionals to model their time dynam-

ics. We use regression models, as well as, GMMs for the prob-

lem of affective classification of generic audio. Feature selec-

tion algorithms are used to identify a subset of good performing

features. Features and models are evaluated on the BBC Affec-

tive Database in terms of classification accuracy and correlation

with human ratings for each of the arousal, valence and domi-

nance dimensions.

There is virtually no prior work on generic audio affect

apart from [3]. Unlike that, this paper focuses on the classi-

fication task itself. The results achieved are very encouraging

and an improvement over the limited prior work. We also be-

lieve that the audio database annotation, containing almost 1500

unstructured sound clips from a variety of sources is a signifi-

cant contribution. Its’ size and content variance should enable

the use of machine learning methods to the task.

2. Dataset Annotation and Analysis

In order to apply supervised machine learning methods, we

manually annotate a generic audio database [6] in accordance



with the 3-D affective model of arousal, valence and domi-

nance. This affective model has been shown to offer sufficient

descriptive power in a similar context [5] and has been very

popular in affective research in recent years.

2.1. BBC Affective Database

The dataset contains 1472 audio clips from the BBC sound ef-

fects library. The clips contain generic, non-music, non-speech

sounds, including sound effects and ambiances, such as “baby

crying”, “beach ambiance” and “factory machinery”. Reflecting

the wide variance in content is the distribution of clip lengths,

shown in Fig 3; clips containing sound effects are very short,

whereas clips containing ambiance sounds can last for min-

utes. The clips were annotated by 383 annotators between June

2009 and July 2011. The annotators rated their own genuine

emotional response to each clip’s emotional content in terms of

arousal, valence and dominance in a range of 0 to 8 using self-

assessment manikins [5]. The annotators were not informed of

the content of the clips, so they did not know what produced

the specific sound. Each annotator rated (on average) 124 clips,

chosen randomly. Overall, an average of 32 ratings are avail-

able for each clip. The listening experiments were performed

in an acoustically treated environment using headphones con-

nected to a computer. The audio clips were presented using

an automatic web-based software interface running on the same

computer. To derive a ground truth from these individual an-

notations we use the weighting/rejection method proposed in

[13], where the final ratings are weighted combinations of the

individual users’ ratings and the weights are proportional to the

Pearson correlation between ratings.

Table 1: Agreement metrics for each dimension

Inter-annotator agreement

Metric Arous. Valen. Domn.

avg. pairwise correlation 0.52 0.55 0.16

avg. pairwise mean abs. dist. 2.02 1.84 2.32

Krippendorff’s alpha (ordinal) 0.39 0.47 0.11

Krippendorff’s alpha (interval) 0.39 0.46 0.10

Agreement with the ground truth

Metric Arous. Valen. Domn.

avg. correlation 0.55 0.60 0.41

avg. mean abs. dist. 1.42 1.18 1.36

2.2. Annotation Results
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Figure 1: Scatter plots of clip affective ratings.

In addition to the 1472 clips, an extra set of 5 clips were

annotated by all users and used to calculate agreement statis-

tics, pairwise correlation, pairwise distance and Krippendorff’s

alpha. which are presented in Table 1. The agreement rat-

ings for arousal (A) and valence (V) are as expected, per-

haps even high given that each user rates his or her own sub-
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Figure 2: Affective rating distributions per semantic category.
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Figure 3: Histogram of audio clip lengths.

jective emotional experience when listening to a clip. The

higher agreement for V is consistent with [3]. The users how-

ever were notably less in agreement with regards to dominance

(D). Also shown in Table 1 are the ratings of average user

agreement to the ground truth, which are as expected much

higher. In Fig. 1 the two dimensional scatter plot of the de-

rived ground truth are shown. The shape of the valence-arousal

plot in particular does not match the “V” shape shown in [5]

for a similar data set: in our case the positive valence - high

arousal quadrant is relatively empty, indicating that very few

clips were considered “uplifting”, though that may be a result

of the random clip selection process, whereas IADS was cre-

ated so as to elicit specific reactions from the listeners. The

three dimensions are weakly correlated when taking into ac-

count each user’s ratings (V-A: -0.45, V-D: 0.47, A-D: -0.38),

however the three ground truth dimensions are strongly cor-

related (V-A: -0.82, V-D: 0.88, A-D: -0.84). The high corre-

lation has also been noted in the IADS dataset (V-A: -0.44,

V-D: 0.94, A-D: -0.54). Examining the results reveals no

particular issues, with samples having affective ratings close

to the expected. Some samples with extreme affective val-

ues are: burglar alarm ([A,V,D] = [6.9, 1.6, .19]), ambulance

siren ([A,V,D] = [6.7, 1.4, 1.7]), birds and insects ([A,V,D]

= [0.8, 6.8, 6.1]), blackbird ([A,V,D] = [0.9, 7.2, 6.7]), Wem-

bley stadium crowd ([A,V,D] = [5.6, 5.1, 3.8]).
Apart from affective ratings, the dataset contains semantic

labels (contained in the BBC sound effects library) and ono-

matopoeia labels produced as described in [1] for most clips, al-

lowing the hierarchical analysis of sounds. A sample of the dis-

tributions of affective ratings per semantic category is shown in

Fig. 2. The distributions show some expected trends: annotators

found nature sounds (containing animal sounds and nature am-

biances) particularly positive, whereas machinery sounds were

rated as particularly negative, perhaps annoying.

3. Modeling and Feature Extraction

Motivated by recent research in affective modeling for music

[11] and text [14] we use regression models for affective clas-

sification of generic audio. Specifically, we investigate the use

of Multiple Linear Regression (MLR) and Multiple Quadratic

Regression without the interaction terms (MQR). Regression

models consider the output as the result of a parametric func-



tion, with the features taking the role of variables.

Although the valence, arousal and dominance ratings in our

database take continuous values, it is not uncommon to use two

or three classes (e.g., positive-neutral-negative) to describe each

of the three dimensions, since that level of detail is enough for

a lot of applications. In order to use the ground truth ratings

for a categorical classification task, they were quantized into

equiprobable bins using the cumulative distribution function es-

timated via Parzen windows. Thus we are faced with a 3-class

classification problem, where each audio clip has to be cate-

gorized in one of the three discrete classes (independently) for

each dimension. The results obtained using regression models

are continuous values, which can then be quantized to three lev-

els for our task.

Gaussian Mixture Models (GMMs) are also used as base-

line classifiers. GMMs are probabilistic models where each cat-

egory is described by the observation distributions of the fea-

tures. Since clips contain multiple feature frames, the posterior

probabilities estimated in each frame are combined to produce

a clip-level score. The clip-level posterior probability is com-

puted as the product of all frame-level posterior probabilities.

3.1. Feature extraction

We take a generic approach to feature extraction: essentially

we extract all features that could prove useful, followed by

feature selection to identify the best performers. Because the

dataset is composed of generic sounds, rather than speech or

music, we exclude features that are specific to these audio types,

e.g., pitch-related features used for speech. A variety of frame-

level descriptors are extracted in the time, frequency or cepstral

domains. These features have been used in both speech and

music processing and consist of Mel-frequency cepstrum co-

efficients (MFCCs), chroma coefficients, (log) Mel filter-bank

power (log power values of a Mel-scaled bank of 26 filters), en-

ergy (RMS ang log), loudness, intensity, spectral rolloff (25%,

50%, 75%), spectral flux, spectral entropy, rhythm irregularity,

rhythm fluctuation, spectral brightness, spectral roughness and

spectral novelty. All frame-level descriptors were extracted us-

ing existing toolkits, namely, the OpenSMILE [15] and MIR

toolbox [16], using a hop size of 10ms and a frame size depen-

dent on the feature: 25ms for low-level features like energy, up

to a second for music inspired features like rhythm fluctuation.

In addition to the base descriptors we also use their first deriva-

tives (deltas) computed over four frames.

Frame-level features are combined into long-term descrip-

tors using a set of 51 functionals to the frame level descriptors,

including simple statistics like arithmetic, quadratic and geo-

metric mean, standard deviation, variance, skewness and kur-

tosis, extrema, ranges, quartiles, inter-quartile ranges, linear

and quadratic regression coefficients (where linear coefficient

1 is the slope) and regression errors (metrics of how much the

frame-level descriptors deviate from the ideal estimated form),

curvature statistics (% of time with left of right curvature) and

histogram descriptors (% of samples in 4 equally spaced bins).

All functionals are applied for the length of a clip, so a single

value is extracted per clip for each frame-level feature. Extrac-

tion of all functionals was done using the OpenSMILE toolkit.

Overall the feature pool contains 7140 long-term features (the

cartesian product of functionals and frame-level features).

3.2. Feature Selection and Experimental Procedure

Due to the large number of resulting features, it is imperative to

use a feature selection algorithm to choose the top performers.

To do so we use wrappers [17], that is we use the performance

of the models themselves while running cross-validation exper-

iments to evaluate each candidate feature set. Due to the large

number of available features and the limited dataset size running

a backwards selection strategy is not possible (in some cases we

have more features than training samples). The strategy we use

is one of best-first forward selection: starting from an empty

feature set we iteratively add more features without deletions,

e.g., when choosing the second feature we do not evaluate all

pairs but only those that include the best performing feature se-

lected during the first iteration.

The feature selection criterion used for the GMM model

is 3-class accuracy, while for the regression models Pearson

correlation (with human ratings) is used1. For both GMMs

and regression models, features are selected and performance is

evaluated by conducting 10-fold cross-validation experiments.

Specifically, using wrappers we select the first one hundred best

performing features for each model and affective dimension.

The output of the MLR model is a continuous value for each

sample; to convert to discrete category labels we use the same

quantization boundaries used to convert the continuous ground

truth to discrete values. This makes the results of GMMs and

regression models directly comparable.

4. Experimental Results

Next, we report affective classification results for the arousal,

valence and dominance dimensions. Performance is reported

in terms of classification accuracy and Pearson correlation

(pooled) between the estimated and hand-labeled ratings. Re-

sults from three experiments are reported in order to demon-

strate: (i) the performance of the short-term (frame-level) vs

long-term (functionals) features (Table 2), (ii) the relative per-

formance of the regression and GMM models in terms of clas-

sification accuracy shown in Fig. 4, and (iii) the performance of

the regression models in terms of correlation with human rat-

ings (Table 3).

Table 2: GMM classification accuracy for LLDs and functionals

Scope Low Level. Descr. Arous. Valen. Domn.

frame chroma +∆ 0.41 0.45 0.43

level log Mel power +∆ 0.44 0.48 0.44

MFCC + ∆ 0.45 0.44 0.43

long chroma +∆ 0.41 0.46 0.42

term log Mel power +∆ 0.46 0.49 0.46

MFCC + ∆ 0.48 0.48 0.45

In Table 2, we compare the classification accuracy (3-class)

for the frame-level vs the long-term features. Results are re-

ported for the following frame-level descriptors: chroma, log

Mel power and MFCCs (along with their first times derivative).

For the computation of long-term features, we select a single

functional, the best performing one for each dimension, applied

to all frame-level descriptors (LLDs). Therefore the same num-

ber of features is used for both frame-level and long-term fea-

tures. The results in Table 2 show a clear benefit when moving

from frame-level to long-term features in almost all cases. This

trend can be attributed to the better representation of audio dy-

namics when functionals are used (rather than simply multiply-

ing frame-level posteriors). It should be noted that only a single

1Note that using classification accuracy (instead of correlation) as a
feature selection criterion gives a slight advantage to GMMs.
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Figure 4: 3-class accuracy achieved by GMM (red dashed-dotted line) and regression models (black solid, green dashed) as a function

of the number of features for (a) arousal, (b) valence and (c) dominance. Human annotator performance is shown as “users” (dotted).

functional is used for all 26 frame-level descriptors: by adding

more functionals or using different functionals for each LLD

performance improves further. Similar results have been ob-

tained for regression models (not reported due to lack of space).

In Fig. 4 (a),(b),(c), we show 3-class classification accuracy

for each dimension as a function of the number of (long-term)

features used for the GMM and regression (MLR, MQR) mod-

els. We also report the average performance of human annota-

tors on the same task2 shown as the dotted “users” line in the

figure. Results are reported using 10-fold cross-validation and

feature selection as described in Section 3.2. The following are

the main conclusions from these experiments: (i) Human “clas-

sifier” performance can be beaten by both GMM and regression

models using only a handful of selected features. (ii) Both hu-

mans and machines have a harder time estimating dominance

scores than arousal and valence. (iii) Performance improves

significantly with the number of features and levels off around

67% for arousal and valence, and 62% for dominance. (iv)

Looking at the relative performance of the models, we see that

GMMs perform best when it comes to predicting valence and

when predicting dominance using a small number of features,

while regression models perform better at predicting arousal

and predicting dominance with a large number of features3. (v)

Regression models seem to scale better with increased num-

ber of features, i.e., the performance of regression models im-

proves faster with increasing number of features. The improved

scaling capability of regression models is probably due to the

relatively small number of parameters: MLR and MQR mod-

els have only one parameter per feature space dimension. (vi)

There is a small difference in terms of performance between

the linear and quadratic regression models in terms of perfor-

mance, with the MQR performing somewhat better. Overall,

both GMM and regression models perform very well for the

problem of 3-class emotion classification surpassing the perfor-

mance of an average human annotator, reaching accuracies up to

67%. These results are very encouraging given that our dataset

contains very diverse audio content that is hard even for human

listeners to characterize.

For some application continuous affective ratings are

needed [18]. Regression models have the advantage of produc-

ing such continuous ratings. In Table 3, we report Pearson cor-

relation between the ratings produced by the MLR model and

the ground truth as a function of the number of features. Re-

2We assume that the annotation performed by each user is a classifi-
cation result and compare it to the ground truth. This human annotator
classification accuracy is then averaged over all users.

3One should keep in mind that feature selection is better tuned to
GMMs (where classification accuracy is the selection criterion).

Table 3: Pearson correlation performance for the MLR model

Model # of features Arous. Valen. Domn.

Users - 0.55 0.60 0.41

10 0.70 0.67 0.63

MLR 20 0.72 0.70 0.65

Regression 30 0.74 0.71 0.67

Model 40 0.75 0.72 0.68

50 0.75 0.73 0.69

sults were obtained via a double loop 10-fold cross-validation,

with the internal loop used for feature selection and the external

loop used for evaluation. Correlation performance for a typical

human labeler is reported as “Users”. As is the case with clas-

sification accuracy: (i) the regression model easily beats human

performance, (ii) correlation improves with increased number

of features and (iii) dominance is harder to predict than arousal

and valence. In terms of absolute numbers, high correlation of

[0.75, 0.73, 0.69] is achieved for the 3 dimensions.

5. Conclusions

We have shown that regression models and long-term features

(estimated using functionals over frame-level features) perform

well for estimating continuous affective ratings of generic au-

dio. In addition, feature selection over a family of frame-level

features and functionals significantly improves results reach-

ing 62-67% 3-class accuracy and 0.69-0.75 correlation, which

are significantly higher than those reported in literature. These

are very encouraging results given the increased difficulty com-

pared to music and speech. In the future, we will investigate in

more detail how long-term features can better capture the dy-

namics of audio clips, analyze the output of the feature selec-

tion process as a function of audio clip type and length, as well

as, improve the modeling and feature extraction process. The

annotated database of generic audio will be published for the

scientific community in the near future.
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