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Abstract
We propose and evaluate the use of an affective-semantic model
to expand the affective lexica of German, Greek, English, Span-
ish and Portuguese. Motivated by the assumption that seman-
tic similarity implies affective similarity, we use word level se-
mantic similarity scores as semantic features to estimate their
corresponding affective scores. Various context-based seman-
tic similarity metrics are investigated using contextual features
that include both words and character n-grams. The model pro-
duces continuous affective ratings in three dimensions (valence,
arousal and dominance) for all five languages, achieving consis-
tent performance. We achieve classification accuracy (valence
polarity task) between 85% and 91% for all five languages. For
morphologically rich languages the proposed use of character
n-grams is shown to improve performance.
Index Terms: affective lexicon, affective ratings, valence,
arousal, dominance, semantic similarity, sentiment analysis,
emotion recognition

1. Introduction
Emotion is mainly conveyed by speech, but it can still be per-
ceived in text and it can be elicited by its content and form [1].
Readers experience emotion by placing themselves in the posi-
tion of characters of a narrative and imagining their own emo-
tional reaction [2]. Affective text analysis has recently attracted
much interest from the research community [3–6]. An open re-
search question is whether affective analysis of text can be han-
dled equally well across different languages. Affective anal-
ysis for multiple languages was investigated in [7] for sub-
jectivity detection and in [8] for polarity (valence) prediction.
Computational tools of affective text analysis typically rely on
the exploitation of affective lexica. Affective lexica consist of
word entries (usually about 1K) of a target language, that are
annotated with respect to emotional dimensions, usually va-
lence, arousal and dominance. Examples regarding the manual
creation of lexica are available in the literature for languages
such as English [9], Spanish [10], European Portuguese [11]
and Greek [12]. Since the size of such manually created re-
sources is limited, the development of models that automati-
cally expand them is very important. For example, an affective
resource for Russian and Romanian was automatically created
in [4]. The availability of multilingual affective resources al-
lows the investigation of the universality of text-based affec-
tive models for different languages, enabling the development
of cross-language tools.

Textual affective models have been applied to numer-
ous problems such as sentiment analysis and opinion mining

[13, 14], affective analysis of social media [15–17], product re-
views [18], news headlines [3], emotion prediction on spoken
dialogues [19, 20]. Affective analysis of text is applied on var-
ious lexical units, such as words [21–23], phrases [6, 24], sen-
tences [23], even whole documents [25]. Affective analysis of
text can contribute to the development of multimodal affective
systems [26–28].

Features choice is at the core of affective computational
models and often depends on the target application. The sim-
plest textual features used in most affective models employ the
lexical information itself. In [29], the count of words is used for
personality recognition. Non-lexical features such as punctua-
tion marks, emoticons or references to other users [17] are pop-
ular for the affective analysis of user-created content in social
media. Semantic features, have also been employed in affective
models [5,23], based on the assumption that “semantic similar-
ity can be translated into affective similarity”. Semantic simi-
larities can be computed from a corpus using co-occurrence- or
context-based metrics. Context-based semantic similarities [30]
are motivated by the hypothesis that “similarity of context im-
plies similarity of meaning” [31].

An affective-semantic model that automatically expands
small affective lexica is of great relevance for the creation of
lexica with good vocabulary coverage. In this paper, we ap-
ply a model that was first proposed in [23] in similar fashion
to [6]. The model is expanded to model more affective dimen-
sions (valence, arousal, dominance) and languages (English,
German, Greek, Portuguese and Spanish). Additional context-
based semantic similarity metrics are explored using both word
and character n-grams as contextual features, and early fusion
schemes are being investigated. In addition, alternative criteria
(ridge regression) are investigated for training the model param-
eters. The proposed model is evaluated for each of the afore-
mentioned languages using as ground truth the human scores
provided for each dimension.

2. Affective Model
As illustrated in Figure 1, the model takes as input a small af-
fective lexicon and consists of two modules: the semantic sim-
ilarity computation module (semantic features) and the map-
ping from the semantic to an affective space (semantic-affective
map). A small manually annotated affective lexicon is required
for bootstrapping the process. Specifically, the affective model
is fed with a number of seed words (a subset of the affective lex-
icon) and their corresponding affective ratings, in order to train
the semantic-affective map. The affective rating of unknown
words is then estimated based on the assumption that words that



are semantically related are also affectively related, leading to
an expanded affective lexicon.

Figure 1: Abstract representation of the affective model.

According to [23], the semantic-affective model estimates
affective ratings as a weighted linear combination of semantic
similarities between the unknown and the seed words, as fol-
lows:

υ̂(wj) = a0 +

N∑
i=1

aiυ(wi)S(wj , wi), (1)

where wj is the unknown word, w1..N are the seed words,
υ(wi), ai are the affective rating and the weight correspond-
ing to the word wi and S(·) is the semantic similarity metric
between two words. An important advantage of the proposed
affective model is the fact that it requires only a small affective
lexicon in order to estimate affective ratings for any number of
unknown words. Next we detail how the seed word weights ai
and the semantic similarity metrics are estimated.

2.1. Estimation of weights

The ai weights are used in (1) because not all seed words are
equally salient for the estimation of affective ratings. Super-
vised learning can be employed for estimating these weights as
follows:

Xβ = y, (2)

where X is a µ × N matrix containing µ training samples and
N features for each sample. β is a N × 1 vector including
the ai weights, while y is a N × 1 vector containing the known
affective ratings. According to Least Squares Estimation (LSE),
the weights can be estimated as follows:

β̂ = argmin
β
||y −Xβ||2 (3)

LSE may yield weights with large variance, so we investigate
the use of Ridge Regression for alleviating this problem. Ridge
Regression (RR) uses the estimator shown in (4), incorporating
a regularization factor, λ, which forces the weights to shrink
toward zero.

β̂′ = argmin
β′

[
||y −Xβ′||2 + λ||β′||

]
, (4)

where β′ is the weights vector. The λ values should be greater
than zero, while for λ = 0 the LSE and RR estimators are iden-
tical [32].

2.2. Semantic Features

The S(·) metric used in (1) can be implemented within the
framework of distributional semantic models (i.e., coprus-based
models) that are based on the assumption that words that occur
in similar context tend to be semantically related [30, 33]. Hav-
ing a vocabulary and a corpus in a target language, we can create
a contextual feature vector for each vocabulary entry wi, as fol-
lows. Lexical features are extracted after centering a contextual
window of size 2H+1 words on each instance of the target word
wi in the corpus. Then, a feature vector xi is formulated by ex-
tracting the words in distance H from the window center. The
semantic similarity between two wordswi,wj can be computed
as the cosine of their respective feature vectors:

QH(wi, wj) =
xi.xj

||xi|| ||xj ||
. (5)

The aforementioned feature extraction typically deals with
words. However, it can be modified by extracting the character
n-grams from the words that are captured by the applied contex-
tual window. Usually, the selection of n depends on the desired
amount of lexical information that n-grams carry. The elements
of the feature vectors are set according to two schemes: 1) a
weighting scheme based on the frequency of the features, 2)
a binary scheme (B), where each element is set to one if the
corresponding feature frequency is at least one and zero other-
wise [34]. The weighting scheme we use is based on the point-
wise mutual information (PMI). The PMI between a word wi
and the k–th feature of its vector xi, fki , is computed as shown
in (6) [35].

PMI(wi, f
k
i ) = − log

p̂(wi, f
k
i )

p̂(wi)p̂(fki )
, (6)

where p̂(wi) and p̂(fki ) are the occurrence probabilities of
wi and fki , respectively, while the probability of their co-
occurrence (within theH window size) is denoted by p̂(wi, fki ).
The corpus-based frequencies of lexical items (words or char-
acter n-grams) were used in order to compute the probabilities,
according to maximum likelihood estimation. The scores de-
rived using PMI lie in the [−∞,+∞] interval. In particular, we
use the positive point-wise mutual information (PPMI), in or-
der to bound the computed scores within the [0,+ inf] interval.
PPMI is a special case of PMI according to which the negative
PMI scores are set to zero, based on the assumption that the
contextual features that exhibit negative PMI do not contribute
to the estimation of similarity much [36].

3. Experimental Procedure
The affective-semantic model is used for the affective lexicon
expansion task for five languages, namely English, German,
Greek, Portuguese and Spanish. This is done for all three af-
fective dimensions valence, arousal and dominance (V,A,D).
The English affective lexicon, a.k.a. ANEW [9] contains
1034 words rated in the three continuous affective dimensions
(V,A,D). ANEW words were translated into Spanish [10], Euro-
pean Portuguese [11] and Greek [12] and rated by native speak-
ers on the same affective dimensions. The German affective
lexicon consists of 2902 words rated on valence and arousal. To
simplify performance comparisons we selected a subset with
1034 words and similar ratings distributions with the rest of the
lexica.

A corpus per target language was harvested for the compu-
tation of context-based semantic similarities. The corpora we



used were created using web data as follows. The process starts
with the definition of a vocabulary for each language: 135K,
332K, 407K, 125K, 187K entries for English, German, Greek,
Portuguese and Spanish, respectively. For each word of the vo-
cabulary a web search query was formulated and the snippets of
1K top-ranked documents were downloaded and aggregated.

In order to show the impact of the semantic features on each
language’s affective lexicon expansion, we employ the context-
based semantic similarity metric. The contextual window size
is set to H = 1 and variations of the contextual features and
weighting schemes are used in order to create the similarity
metrics described below. The metrics employ two types of
contextual features, namely, words (W) and character n-grams
(ngram). Two types of weighting schemes are also employed as
described in Section 2. Early fusion schemes were also inves-
tigated, combining feature vectors that consist of different size
n-grams, or of n-grams and words. In Table 1 we list the con-
textual features and the weighting schemes that are employed
by each context-based similarity metric.

Similarity metric Contextual features Weigh. scheme

Words
Character
n-grams PPMI Binary

W-B X × × X
W-PPMI X × X ×
4gram-B × n = 4 × X
4gram-PPMI × n = 4 X ×
2/3/4/gram-B × n = 2, 3, 4 × X
W+4gram-PPMI X n = 4 X ×

Table 1: Contextual features and weighting schemes for the se-
mantic similarity metrics.

Moreover, the RR estimator was implemented for estimat-
ing the weights used in (1). RR requires a tuning step in or-
der to find the appropriate value λ, that maximizes the affective
model’s classification accuracy. The tuning step is repeated for
each language and each affective dimension, using the W-PPMI
semantic similarity metric using held-out data.

4. Results
In this section, we present and discuss the performance of the
affective lexicon expansion for the various languages and af-
fective dimensions. Results are presented using different se-
mantic similarity computation methods (contextual features and
weighting schemes) and weight estimation approaches. For af-
fective model evaluation, we use the seed selection algorithm
of [23] and we apply 10-fold cross validation using the affective
lexicon of each language both for parameter estimation and for
evaluation. An important parameter in our experiments is the
number of seedsN in (1). In each fold 10% of the affective lex-
icon words is used as test (unknown words) and 90% is used as
train. The model performance is captured through binary clas-
sification accuracy (positive vs. negative values) and Pearson
correlation between the automatically estimated and the manu-
ally annotated valence ratings.

The performance for each affective dimension and language
as a function of the seed words, using the W-PPMI semantic
similarity metric is shown in Figure 2. The affective model
appears to be robust and well-performing when at least 100
seeds are used. The highest performance is reached for 500-600

seeds, for all the affective dimensions. Performance for valence
(Figure 2(a), 2(d)) is consistent across all languages while the
highest scores are obtained for English and Portuguese. Perfor-
mance is consistent also for arousal (Figure 2(b), 2(e)) and dom-
inance (Figure 2(c), 2(f))1. Among the three affective dimen-
sions, the highest performance is achieved for valence, while
the poorest performance is achieved for arousal2. The reasons
for the differences in the results across languages are not easily
interpreted, however they could be attributed to language mor-
phology differences.

The correlation and classification accuracy of the affective
(valence) lexicon expansion across the different languages is
shown in Table 2. The results are presented for the semantic
similarity metrics described in Section 3, using 600 seeds and
LSE3. Although the performance is consistently high for all lan-
guages and semantic similarity metrics, minor differences exist
between them. The PPMI weighting scheme is superior to bi-
nary in all cases, especially for German. The highest perfor-
mance is achieved for English and European Portuguese when
the feature vector consists of the contextual words. The use of
context character n-grams yields a slight improvement to perfor-
mance especially for morphologically rich languages when the
binary scheme is used. The early fusion scheme that uses both
the contextual words and 4-grams achieves the highest perfor-
mance for almost all languages.

As seen in Figure 2, the performance of the model is not
always robust for a large number of seeds. We investigated
whether the low performance of arousal for Spanish and Greek
can be attributed to the weights estimation method. For this
purpose, we use RR with λ = 0.05 (derived after tuning the pa-
rameter for both languages on arousal, W-PPMI and 600 seeds).
The classification accuracy and the correlation of the arousal
ratings for Spanish and Greek (the two languages with the low-
est performance in arousal) using LSE and RR for 10 up to 900
seeds are shown in Figure 3(left) and Figure 3(right), respec-
tively.
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Figure 3: Classification accuracy (left) and correlation (right)
for arousal using LSE and RR for the estimation of weights.

It is observed that, as the number of seeds increases the arousal
model that uses weights estimated with RR becomes superior
to the model that uses weights estimated with LSE. The model
that employs RR is robust to a large number of seeds compared
to LSE. Additionally, we observed that the best performance
achieved using 600 seeds, W-PPMI and LSE can be improved

1Dominance ratings are not available for German.
2Valence and dominance are highly correlated in all four languages.
3In addition to the reported similarity metrics, W-normalized PPMI

was also investigated (with no significant performance improvement),
as well as 2grams-B and 3grams-B (achieving lower performance than
4grams-B).
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Figure 2: Performance of the affective-semantic model in terms of correlation (a, b, c) and classification accuracy (d, e, f) for valence
(a, d), arousal (b, e) and dominance (c, f) across all five languages, using W-PPMI for similarity computation.

Similarity
Metric

Language
English Greek Spanish Portuguese German

PC CA(%) PC CA(%) PC CA(%) PC CA(%) PC CA(%)
W-B 0.80 86.9 0.74 84.3 0.84 85.9 0.82 89.3 0.68 77.1

W-PPMI 0.86 90.9 0.76 87.6 0.84 85.3 0.84 90.8 0.80 85.2
4gram-B 0.82 87.8 0.77 87.8 0.84 86.4 0.80 87.6 0.78 82.3

4gram-PPMI 0.84 89.8 0.78 87.5 0.85 87.7 0.82 87.4 0.80 82.6
2/3/4gram-B 0.82 88.1 0.75 87.6 0.83 86.6 0.80 86.4 0.78 82.2

W+4gram-PPMI 0.85 90.5 0.79 87.2 0.85 87.9 0.83 89.3 0.80 83.0

Table 2: Classification Accuracy (CA) and Pearson Correlation (PC) between the manually rated and the automatically estimated
valence scores for 600 seeds, across the five languages using various semantic similarity metrics.

(up to 0.5-1%) for almost all languages when 900 seeds and RR
are used.

5. Conclusions
In this work, we expanded the affective lexica of five languages,
namely, English, German, Greek, Portuguese and Spanish for
the three affective dimensions valence, arousal and dominance
utilizing semantic models. Our approach was found to be ap-
plicable across all languages and affective dimensions. Minor
differences in performance could be attributed to the linguis-
tic properties of each language e.g., morphology. We investi-
gated various parameters for the context-based computation of
semantic similarity observing that the character 4-grams (ex-
tracted from the contextual words) are salient features for this
task. We showed that the performance of the affective model de-
pends on the weights estimation method, especially for a large
number of seeds. Specifically, the employment of a more robust
approach for the estimation of weights such as Ridge regression
leads to small performance improvements.

In future work we plan to model the role of morphology in
the computation of semantic similarity. Also, we aim to ver-

ify the universality of our findings by experimenting with more
languages. Last but not least, we aim to investigate the com-
positional aspects of emotion, i.e., how the affective content of
words can be composed in order to estimate affective scores for
larger lexical units such as phrases and sentences.
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