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Abstract
In this work, we address the problem of data imbalance

for the task of Speech Emotion Recognition (SER). We inves-
tigate conditioned data augmentation using Generative Adver-
sarial Networks (GANs), in order to generate samples for un-
derrepresented emotions. We adapt and improve a conditional
GAN architecture to generate synthetic spectrograms for the mi-
nority class. For comparison purposes, we implement a series of
signal-based data augmentation methods. The proposed GAN-
based approach is evaluated on two datasets, namely IEMOCAP
and FEEL-25k, a large multi-domain dataset. Results demon-
strate a 10% relative performance improvement in IEMOCAP
and 5% in FEEL-25k, when augmenting the minority classes.
Index Terms: Generative Adversarial Networks, Speech Emo-
tion Recognition, data augmentation, data imbalance

1. Introduction
In all types of human-human or human-computer interaction,
the manner in which the words are spoken conveys important
non-linguistic information, especially with regards to the under-
lying emotions. Therefore, it has become obvious that modern
speech analysis systems should be able to analyze this emotion-
related non-linguistic dimension, along with the message of the
utterance itself. For that reason, during the last years, meth-
ods that automatically identify the emotional content of a spo-
ken utterance draw a growing research attention. Speech Emo-
tion Recognition (SER) is a supervised audio task, which maps
low-level audio features to either high-level class labels of dis-
tinct emotions or scalar values of affective dimensions, such
as valence and arousal. In any case, annotated datasets are of
great importance in building and evaluating SER systems. In
this work, we deal with the problem of data imbalance in SER,
and we propose a Generative Adversarial Network (GAN) ar-
chitecture that generates artificial spectrograms for the minority
emotional classes.

As with all classification problems, feature representation
plays an important role in SER. Audio features need to ef-
ficiently characterize the emotional content, without depend-
ing on the speaker attributes or the background noise. Widely
adopted hand-crafted audio representations include spectral-
domain (e.g. spectral centroid and flux), cepstral-domain (e.g.
MFCCs) and pitch-related features [1, 2]. Lately, spectrograms
have also been used along with Convolutional Neural Networks
(CNNs) as image classifiers [3, 4]. CNNs are able to deal with
high-dimensional inputs and learn features that are invariant
to small variations and distortions. Furthermore, it has been
proved that Recurrent Neural Networks (RNNs), such as Long
Short-Term Memory units (LSTM), are able to take into account
the temporal information in speech, resulting in a more robust

modeling of the speech signals [5, 6, 7, 4]. LSTMs can also
be combined with CNNs [8, 9], in order to automatically learn
the best signal representation. Spectrograms are extracted both
from the speech and glottal flow signals in [10], while spectro-
gram encoding is performed by a stacked autoencoder and an
RNN is trained to predict four primary emotions.

Data with non-uniform or highly skewed distributions
among classes is a common issue in SER. During the processes
of data collection and annotation, neutral speech samples are
much more frequent than the emotionally-charged ones, leading
to highly imbalanced datasets. A common way to address data
imbalance is through data augmentation techniques. In [11]
authors divide data augmentation techniques into feature-space
through oversampling and data-space synthetic sample gener-
ation through transformations. Their experiments favor data-
space augmentation for digit classification. In [12] seven data-
space augmentation techniques are evaluated for singing voice
detection on spectrogram data, with pitch shifting and random
frequency filters being the most effective. Pitch augmentation
has also proven to be beneficial for environmental sound clas-
sification [13] and for music genre classification [14]. For the
task of SER, the work in [15] applies speed pertubations on the
raw signal, while [16] proposes a combination of oversampling
and vocal tract length pertubation. Recent approaches focus on
learned augmentation strategies [17, 18] or GANs [19] to gen-
erate training samples.

GANs are powerful generative models that try to approxi-
mate the data distribution by training simultaneously two com-
peting networks, a generator and a discriminator [19]. A lot
of research has focused on improving the quality of generated
samples and stabilizing GAN training [20, 21]. Recently, the
GAN ability to generate realistic in-distribution samples has
been leveraged for data augmentation. Specifically, in [22] au-
thors train a GAN that generates in-class samples. In [23] the
CycleGAN architecture [21] is adapted for emotion classifica-
tion from facial expressions. As for the speech domain, in [24]
synthetic feature vectors are used to improve the classifier’s per-
formance on an emotion task. In [25], a conditional GAN archi-
tecture is proposed to address data imbalance.

In this work, we extend the methodology of [25] in the SER
domain, focusing on spectrogram generation for the minority
emotional classes. We propose modifications in the original net-
work architecture and the training process to improve the qual-
ity of the generated spectrograms. Extensive experimental re-
sults on the aforementioned approach and a series of other audio
data augmentation techniques prove that the proposed method
addresses data imbalance more effectively. To the best of our
knowledge, this is the first time GANs are used to address the
problem of data imbalance through data augmentation in the
context of SER or other audio classification task.
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Figure 1: Architecture of the proposed GAN

2. Proposed Method
2.1. Motivation

Real-world emotion recognition datasets suffer from data im-
balance, as non-neutral emotions are usually very sparse in the
initial mined data sources. However, only few works have fo-
cused on the problem of data augmentation for SER to ad-
dress the imbalance issue. Most of them are limited to signal-
based transformations, such as time stretching, pitch shifting
and noise addition, which have been adopted for generic audio
classification and music information retrieval tasks as well. We
apply these approaches for comparison purposes (see Sec. 2.5
for further details). Instead, in this work, we propose using
GANs to generate artificial samples for the minority classes.

2.2. Method Description

In this work, we adapt the Balancing GAN (BAGAN) method-
ology proposed in [25], which addresses the imbalance issue
in various image classification tasks. The basic concept behind
this approach is the training of a GAN to generate realistic sam-
ples for the minority class. The generator contains a series of
transposed convolutional and upsampling layers, while the dis-
criminator consists of a series of convolutional layers. However,
the original architecture did not generate high-quality spectro-
grams as shown in Fig. 2a (Note: compare with the spectrogram
in Fig. 2b generated by our proposed approach discussed next).

(a) original BAGAN (b) proposed approach

Figure 2: Sample spectrograms generated by original BAGAN
as in [25] (a) and the proposed approach (b)

We propose the fully convolutional architecture illustrated
in Fig. 1. In Fig. 1a, we show the generator G architecture,
where we use 2 dense layers to project the input state to a higher
dimensionality and 8 transposed convolutional layers to pro-
duce a spectrogram image. We double the stride in every second
deconvolution layer to increase the height and width of the in-
termediate tensors. The final layer of G is a convolutional layer

that converts the input tensor to a spectrogram image. In Fig. 1b,
the discriminator D uses 8 convolutional layers and a softmax
classification layer to discriminate between fake spectrograms
and spectrograms of a specific emotion class 1.

In brief, the main steps of the proposed methodology are:
(a) Autoencoder training (b) GAN initialization and (c) GAN
fine-tuning.

Autoencoder Training: For faster convergence, the GAN
is initialized using a pre-trained autoencoder. The autoencoder
consists of the encoder which corresponds to the D architec-
ture, replacing the last softmax layer with a dense layer of size
100, and the decoder which has the same architecture as G.
The autoencoder is trained using the whole imbalanced dataset,
without any explicit class knowledge. In this step, the model
learns weights close to a good solution, avoiding the issue of
mode collapse [19, 26, 27] during adversarial training.

GAN Initialization: The learned weights are transferred
to the GAN modules - the encoder weights are transferred to
D and the decoder to G respectively. For class conditioning,
we calculate the mean and covariance matrix of the learned la-
tent vectors of the autoencoder that correspond to the images of
each class. In this way, we model each class with a multivariate
normal distribution. Then, we sample at random a latent vector
from the distribution of a specific class and provide it as input to
G, which outputs a realistic spectrogram for this class. Contrary
to the autoencoder, GAN has explicit class knowledge.

GAN Fine-tuning: The proposed GAN is fine-tuned using
both the minority and majority classes of the training data. In
this way, it learns features that are shared between classes, e.g.
dominant frequencies in the spectrogram. Such features con-
tribute to a more qualitative image generation for the minority
class. During fine-tuning, G takes as input the aforementioned
latent vectors, that are extracted from the class-conditional la-
tent vector generator. The latter takes as input uniformly dis-
tributed class labels. Then, the batches of real and generated
images are forwarded to D. The goal of each one of the two
competing networks, G and D, is to optimize its loss function,
for which sparse categorical cross-entropy is used. D is opti-
mized to match the real images with the correct class labels and
the generated ones with the fake label. As for G, it is optimized
to match the labels selected by D with the labels used to gen-
erate the images. Following the GAN fine-tuning, we use G
to generate artificial spectrograms for each class separately to
reach the majority class population.

1The reason D does not perform a binary classification between real
and fake samples, is that minority class samples would be misclassified
as fake, due to their rarity [25].
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2.3. Implementation Details

The spectrograms are normalized in the [-1, 1] range applying
min-max normalization, so we use tanh activation at the de-
coder output. In both modules, batch normalization, dropout
with p = 0.2 and leaky ReLU activations are added after each
(de)convolutional layer. Real and fake samples are fed to D
separately in successive batches, mainly due to the use of batch
normalization. In addition, we use Adam optimizer with learn-
ing rate 5 × 10−5 when training the autoencoder and decrease
it to 10−6 when fine-tuning the GAN.

2.4. Architecture Modifications

The proposed GAN-based augmentation method is basically
differentiated from the one proposed in [25] in the following
ways: (a) we replace any upsampling layer with transposed con-
volutions, (b) we use leaky ReLU for all the intermediate activa-
tion layers, (c) we have added batch normalization and dropout
and (d) we feed the discriminator with separate batches of real
and fake images. The proposed fully convolutional architecture
avoids extreme values in the generated images, i.e. regions with
zero and one values, as demonstrated in Fig. 2. More examples
of real and synthesized spectrograms for common distinct emo-
tion classes are demonstrated in Fig. 3. Assuming a real-world
imbalanced emotion dataset, the proposed approach can gener-
ate high-quality spectrograms for underrepresented classes.

Figure 3: Real and generated spectrograms for each emotion
class, from IEMOCAP dataset.

2.5. Baseline Methodologies

For comparison purposes, we implement a series of baseline
methods to balance our initial dataset. A first approach would
be the random removal of samples from the majority classes so
that all classes are of equal size. This random selection can be
applied with a number of ratios, considering the less populated
to the most dominant class. Since this technique results in less
data for training, maybe removing useful information as well,
we additionally investigate various data augmentation methods.
After the augmentation process, all classes are represented by
the same number of samples as the majority class.

We focus on signal-based transformations, that are followed
in the literature [12], [13], [14]. We apply time stretch (TS), that
changes the audio signal duration without affecting its pitch,
pitch shift (PS), that changes the pitch without affecting its du-
ration and finally noise addition to the original speech utterance
(either Gaussian noise, GN, or true background audio noise,
BN). In the case of BN, background noise has been extracted
from signals of the ESC-50 [28] and FMA [29] datasets. In

addition, we try the simple technique of sample copying (CP),
randomly adding identical copies of preexisting samples.

Combining all the aforementioned methods, we create a
set of experimental augmentation strategies, described in Ta-
ble 1: Signal-based Audio Augmentation (SA), SA with re-
placement (SAR), SA with replacement of the majority class
only (SARM ), SAR adding only Background Noise (SARB),
SAR using only TS and PS (SARS). The replacement men-
tioned refers to the case of replacing audio samples with their
noisy counterparts, instead of adding them. The number of sam-
ples chosen for replacement for each class is equal to the dif-
ference between the specific class population and the minority
class. This method aims to balance the percentages of noise
samples of every class, in an attempt to prevent any bias to-
wards classes with unusually high or low noise distribution. It
can be applied for either all the classes or only the majority.

Table 1: Dataset augmentation strategies

Method CP TS PS GN BN Replace

CP X - - - - -

SA - X X X X -

SAR - X X X X All

SARM - X X X X Majority

SARB - - - - X All

SARS - X X - - All

3. Experimental Evaluation
3.1. Datasets Description

IEMOCAP (interactive emotional dyadic motion capture
database) is a widely adopted corpus for emotional data, col-
lected by the Speech Analysis and Interpretation Laboratory
(SAIL) at the University of Southern California (USC) [30]. It
has been recorded from ten actors in dyadic sessions, includ-
ing both emotional scripts and improvised hypothetical scenar-
ios. The scenarios have been designed to elicit specific types
of emotions, namely: happiness, anger, sadness, frustration and
neutral state, while additional emotions (excitement, fear, dis-
gust, surprise and other) are also included in the final anno-
tations. It contains approximately 12 hours of speech and it
is considered a standard in most of the SER publications dur-
ing the last years. In this work, we use four emotion classes:
angry, happy, sad and neutral, merging the happy and
excited classes, which results in 5531 speech utterances of
about 7 hours total duration.

Despite its wide adoption, the IEMOCAP dataset (a) con-
tains limited number of speakers and (b) is quite balanced. On
the contrary, in the real world, high imbalance can be noticed,
as well as diversity of different domains. Therefore, part of our
internal (not publicly available) dataset, FEEL-25k, is also used
to evaluate the augmentation methods. In particular, FEEL-25k
contains almost 25k utterances from several domains, includ-
ing films, TV series and podcasts. Its total duration is approx-
imately 49 hours and the ratio of the less populated (sad) to
the most dominant (neutral) class is 1/5. The emotion classes
are: angry, happy, neutral, sad and ambiguous. The latter
contains speech samples for which the inter-annotator agree-
ment was lower than a particular threshold. Each segment has
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been labeled by 3 to 7 human annotators. A separate and large
dataset, which is constructed similarly to FEEL-25k and con-
sists of data drawn from the same broad domains, is used for
testing. It is composed of almost 50k utterances of 100 hours
of total duration.

3.2. Experimental Setup

Feature Extraction and Classification: The data augmenta-
tion methods have been evaluated in terms of the classifica-
tion performance of a CNN. In particular, we have chosen the
VGG19 architecture [31], which results in state-of-the-art per-
formance on IEMOCAP. The network takes as input mel-scaled
spectrograms, that are extracted from fix-sized segments of 3
seconds, after breaking each spoken utterance. During the spec-
trogram extraction a short-term window of 50 mseconds with a
50% overlap ratio has been adopted, while the number of Mel
coefficients is 128. This results in fix-sized spectrograms of
128 × 128. Logarithmic scale has been applied after the fre-
quency power calculation.

Train - Test Data Split: For the evaluation experiments on
IEMOCAP, we use 5 fold cross-validation, namely leave-one-
session-out, using 4 sessions for training and 1 for testing. This
setup is a common practice for IEMOCAP in related SER pub-
lications. As far as FEEL-25k is concerned, cross-validation is
not needed due to the dataset’s size and diversity. Instead, we
have used a shuffle split of 80% - 20% for training and vali-
dation respectively. A separate dataset is used for testing, as
explained in Sec. 3.1.

For both datasets, we perform spectrogram normalization
(see Sec. 2.3), computing the parameters from the training set
and applying them to the validation and test sets. We report the
average performance on the test set, after calculating the major-
ity voting of the segment-level labels for every utterance. When
applying this classification scheme on the whole IEMOCAP
dataset, we achieve an Unweighted Average Recall (UAR) of
56%, which shows a performance improvement of about 1.2%
in comparison to the non pre-trained AlexNet and VGG16 [4].

Datasets Imbalance Strategy: Since IEMOCAP is almost
balanced, we simulate the imbalance issue for each emotional
class separately, i.e. happy, angry and sad, except neutral.
For every class, we remove 80% of the specific class from the
training set, selected at random, in order to reproduce the dif-
ficulty of the classification task when this class is underrepre-
sented. The validation set remains unmodified. In the case
of FEEL-25k, which is gathered “in the wild” and as a result
is imbalanced, we apply directly the audio data augmentation
methodologies. The resulting training set in both datasets is
then augmented using the aforementioned approaches.

3.3. Performance Results

In this section, we present the performance results for both
datasets. In Table 2 we demonstrate the performance achieved
on IEMOCAP. We use UAR metric to be comparable with other
works in the literature. Each column named after an emotional
class corresponds to the simulation described in Sec. 3.2, where
we remove the 80% of the class samples in the training set and
then augment it using one of the methodologies. In the final
column, we compute the average scores of those simulations
to assess the overall performance. The rows correspond to the
different augmentation methods, as described in Sec. 2. For
IEMOCAP, we did not try any random undersampling, since
the minority class in the imbalanced training set contains a
tiny amount of samples (approximately 180), making the CNN

training almost impossible. We see that the proposed approach
achieves almost 10% relative performance improvement.

Table 2: IEMOCAP performance (UAR %)

Dataset Angry Happy Sad Average

Imbalanced 47.8 52.2 46.9 49.0
CP 51.5 50.8 45.8 49.4
SA 49.7 49.6 47.6 49.0
Proposed approach 53.5 55.2 52.1 53.6

Extensive experimental results are presented in Table 3 for
FEEL-25k for the various augmentation methods. We show
both the UAR and F-score results, since F-score computation
combines both recall and precision. It can be observed that all
the attempts to balance the dataset give suboptimal results in
comparison to the initial distribution, with the exception of data
generation using the proposed approach, which achieves almost
5% relative improvement. In general, the signal-based transfor-
mations can lead to overfitting, due to the existence of similar
samples in the training set, while random balance removes pos-
sibly useful information. On the contrary, the GAN-based aug-
mentation method generates high-quality spectrograms. After
the fine-tuning, it can be easily used to generate as many spec-
trograms as needed for the underrepresented emotion classes.

Table 3: FEEL-25k performance (UAR & F-score %)

Category Dataset UAR F-score

- Initial Dataset 52.3 52.7

Random
Selection

0.4 Balanced 50.0 50.3
0.6 Balanced 48.5 48.1
0.8 Balanced 49.6 49.5
Fully Balanced 49.4 48.9

Signal-based
Augmentation

CP 51.1 49.8
SA 50.7 49.2
SAR 51.2 50.0
SARM 51.0 50.5
SARB 51.1 49.7
SARS 49.3 48.0

Generation Proposed approach 54.6 55.0

4. Conclusion
In this work, we propose a GAN architecture for in-class spec-
trogram generation to address the data imbalance issue for
the task of SER, by augmenting the underrepresented classes.
Through extensive experimentation, we provide conclusive ev-
idence that the proposed approach is more effective in compar-
ison to standard augmentation techniques. We provide exper-
imental results both on IEMOCAP and FEEL-25k, showcas-
ing the applicability of our approach, which boosts the perfor-
mance with a relative improvement of 5% to 10%. In the future,
we plan to combine LSTMs with our CNN classifier to take
into account temporal information [8]. Additionally, we will
try more sophisticated conditioning techniques and incorporate
ideas from GANs for raw audio synthesis (e.g. WaveGAN [32])
to directly generate audio samples.
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