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Abstract
We examine the use of linear and non-linear dimensionality re-
duction algorithms for extracting low-rank feature representa-
tions for speech emotion recognition. Two feature sets are used,
one based on low-level descriptors and their aggregations (IS10)
and one modeling recurrence dynamics of speech (RQA), as
well as their fusion. We report speech emotion recognition
(SER) results for learned representations on two databases us-
ing different classification methods. Classification with low-
dimensional representations yields performance improvement
in a variety of settings. This indicates that dimensionality reduc-
tion is an effective way to combat the curse of dimensionality
for SER. Visualization of features in two dimensions provides
insight into disriminatory abilities of reduced feature sets.
Index Terms: Non-linear, dimensionality reduction, emotion
recognition, speech, manifold learning, autoencoder

1. Introduction
Human-machine interaction is constantly evolving towards the
use of more natural interfaces, like speech. Still the key dif-
ference between human-human and human-machine commu-
nication is the ability of humans to recognize the emotion of
their conversation peers and modify their communication strat-
egy based on that. Although significant progress has been done
in the field of speech emotion recognition (SER), machines have
not achieved human-like performance. One of the reasons is the
scarcity of available annotated data. SER databases are mostly
composed of relatively small number of utterances from few
speakers, which limits the generalization abilities of the mod-
els. Furthermore modern SER systems rely on feature sets of
high dimensions. The small amount of training samples do not
cover all combinations of values in the high-dimensional fea-
ture spaces and, thus, SER algorithms suffer from the curse of
dimensionality (CoD) [1]. In this work we postulate that re-
ducing dimensionality of the feature space is an effective way
to combat CoD and demonstrate that low-dimensional repre-
sentations yield simpler models with comparable performance.
Dimensionality reduction (DR) algorithms aim at learning low-
dimensional latent representations of real world data. Such rep-
resentations can be used for exploratory data analysis, to visu-
alize and gain intuition on the statistical properties of data or, as
in our case, extract latent features for input to classification or
regression models.

Evidence that DR on speech features can create robust rep-
resentations for SER can be found in the literature. In [2], Prin-
cipal Component Analysis (PCA) [3] is used to extract low-
dimensional representations for the feature set introduced in [4]
containing 6552 features. The system is evaluated on Berlin

emotional database (Emo-DB) [5]. In [6] Linear Discriminant
Analysis (LDA) [7] and PCA are used for SER, along with a
weighted variation of LDA on a feature set of 225 dimensions.
Experiments showed no significant performance difference be-
tween PCA and LDA. These methods are also compared in [8]
and [9], along with Sequential Forward Selection (SFS) [10],
on a feature set consisting of 48 prosodic features and 16 for-
mants. PCA representations extracted in [8] are found to be
inferior than LDA, while [9] observed no significant difference.
SFS and PCA are also explored in [11] for the Danish Emotion
Speech database [12]. [13] experimentally found that applying
PCA on utterance-level statistics of pitch and energy features
gives equivalent SER performance with the original features on
a call center dialog corpus. Authors in [14] report that classi-
fication accuracy keeps improving when increasing the num-
ber of principal components only up to a centain rank for a
feature set of 33 dimensions. A supervised variation of PCA
along with Greedy Feature Selection (GFS) [15] and Elastic-
Net [16] are explored in [17] on two sets of energy-based and
MFCC-based feature sets of 400 and 82 dimensions, with in-
conclusive results as to which approach is superior. The appli-
cation of Linear and non-linear DR methods on SER is exam-
ined on a prosodic feature set of 48 dimensions in [18]. Com-
pared methods include unsupervised methods like PCA, Isomet-
ric Mapping (ISOMAP) [19] and Locally Linear Embedding
(LLE) [20], and supervised methods LDA, Supervised LLE
(SLLE) [21], Neighborhood Component Analysis (NCA) [22],
Maximally Component Metric Learning (MCML) [23], local
Fisher Discriminant Analysis (LFDA) [24] and Modified SLLE
(MSLLE). Results show better performance of PCA for unsu-
pervised DR while MSLLE was superior for supervised DR.

2. Dimensionality Reduction Algorithms
DR algorithms compress data in a low-dimensional space while
preserving meaningful statistical and geometrical properties.
Such properties are covariance of original data, pairwise dis-
tances between samples or local neighborhoods. They can be
separated into two general categories, linear and non-linear.
Linear DR aims to find a linear projection Y = TX ∈ Rn×k

of the real data X ∈ Rn×m, where k < m. Examples of linear
DR algorithms are PCA and classical multidimensional scaling
(cMDS) [25]. PCA projects data into a low-dimensional space,
which is formed by an orthogonal basis of linearly uncorrelated
vectors called the principal components. Principal components
are selected as the axes along which the samples have maxi-
mum variance. cMDS takes a geometric approach, finding a set
of low-dimensional points that best preserve pairwise euclidean
distances between original data points.

Georgios Paraskevopoulos1,2, Efthymios Tzinis3, Nikolaos Ellinas1,  
Theodoros Giannakopoulos2, Alexandros Potamianos1,2 

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-2769939



Non-linear dimensionality reduction (NLDR) algorithms
aim to infer the intrinsic geometry of the original data, based on
the manifold hypothesis, which states that real world data tend
to lie on a low-dimensional manifold, embedded in the high-
dimensional space. These algorithms are not limited in linear
transformations, like the rotations and stretches that can be in-
duced by a matrix multiplication. An extension of cMDS is met-
ric MDS [26] where dissimilarity measures are assumed metric,
but not necessarily euclidean. When these measures are closely
related to the euclidean distance, e.g. cosine distance, metric
MDS is still characterized as a linear DR approach. Stress Ma-
jorization [26] and Pattern Search MDS [27] are two algorithms
for metric MDS. The non-metric extension of MDS [28] tries
to approximate the rank order of original distances by applying
a monotonically increasing function, usually approximated by
isotonic regression. ISOMAP finds an isometric mapping of the
original data by extending metric MDS to approximate geodesic
pairwise distances between original samples space as euclidean
pairwise distances in the transformed samples. Geodesic dis-
tances are approximated by the shortest path distances between
data points. While MDS and ISOMAP consider the global data
geometry, Local Linear Embedding (LLE) reconstructs local re-
gions by finding sets of weights which are used to represent
samples as a weighted combination of their closest neighbors.
Representations are computed by solving a sparse eigenvalue
problem. Modified LLE [29] is an extension of LLE that uses
multiple neighborhood weights and produces more robust re-
sults. Another non-linear approach is Laplacian Eigenmaps or
Spectral Embedding [30], which preserves local manifold ge-
ometry by minimizing the Laplacian of the graph formed by
neighboring data points. The Laplacian of this graph approxi-
mates the Laplacian-Beltrami operator over the manifold, which
indicates the divergence of the mapping of a high-dimensional
point to the low-dimensionsional manifold.

Autoencoders [31] are a class of deep neural networks that
can be used for linear and non-linear dimensionality reduc-
tion and are composed of an encoder and a decoder. Encoder
projects input x to a low-dimensional space via a hidden layer
h, while the attempts to reconstruct x from h. If no non-linear
activations are used, encoder learns a linear projection Wx+ b,
whereas if we use a non-linear activation function (e.g. sigmoid
or rectified linear unit) in the output of the encoder’s layers, a
non-linear embedding is learned.

3. Features for speech emotion recognition

We consider the following feature sets:

IS10 set: The IS10 feature set [32] consists of 1582 features.
IS10 is obtained by transforming the signal in the Fourier space.
Features correspond to 21 statistical functionals (e.g. per-
centiles, linear regression coefficients) applied to 38 low level
descriptors (MFCCs, PCM loudness etc.) and their deltas. Ex-
traction is performed using the openSMILE toolkit.

RQA set: The Recurrence Quantification Analysis (RQA) fea-
ture set [33] consists of 432 features. This feature set is obtained
by analyzing speech dynamics through phase space representa-
tion. The phase space is reconstructed through the use of time-
delayed versions of the original signal and then the recurrence
plots are calculated as thresholded pairwise distances of points
in the phase space. Features are extracted as aggregated RQA
measures from the recurrence plots. Source code for feature

extraction is publicly available.1

Fused set: We concatenate features from IS10 and RQA into
a represenation of 2014 dimensions, modeling both frequency
content of speech signals and recurrence dynamics.

4. Experiments and Results
4.1. Experimental Setup

We use the following databases for evaluation:

Emo-DB: Berlin Database of Emotional Speech (Emo-DB) [5]
contains 535 emotional German sentences, voiced by 10 actors
(5 male and 5 female). Specifically, 7 emotions are included i.e.,
127 anger, 45 disgust, 70 fear, 71 joy, 60 sadness, 81 boredom
and 70 neutral.

IEMOCAP: IEMOCAP database [34] contains 12 hours of
video data with scripted and improvised dialog recorded by 10
actors. Utterances are organized in 5 sessions of dyadic interac-
tions between pairs of actors. For our experiments we consider
5531 utterances of 4 emotions (1103 angry, 1636 happy, 1708
neutral and 1084 sad), where we merge excitement class into
happiness [35], [36], [37], [38].

We consider utterance-level, speaker independent (SI) SER
for our experiments. In this setup a number of speakers are kept
hidden from the training set and used for evaluation. Specif-
ically in the case of Emo-DB we perform leave one speaker
out (LOSpO) cross-validation, where test folds contain the in-
stances of the unknown speaker. For IEMOCAP we use the
leave one session out (LOSO) cross-validation scheme, where
two speakers participating in a session are used as the evalua-
tion folds. This results in a 10-fold cross-validation scheme for
Emo-DB and 5-fold cross-validation for IEMOCAP. We apply
Z-normalization to standardize the features in zero mean and
unit variance, where each sample x is transformed according to
the formula z = x−µ

σ
. Note that for SI experiments only sam-

ples in the training set are used to calculate µ and σ and test
samples are normalized using these statistics.

Representations resulting from all DR approaches are eval-
uated for k-nearest neighbors (kNN) classification. We perform
grid search on the optimal number of neighbors k in the [1, 30]
range and report results for the optimal value for each dimen-
sion and each method. Optimal values of k range from 13 to 20
indicating that consistent neighborhoods are formed in the low-
dimensional spaces. We also evaluate low-rank representations
on SVM with linear and gaussian kernels, and Logistic Regres-
sion (LR), with optimal value of C in the range [0.01, 10]. Au-
toencoder is trained with 3 encoder layers, 3 decoder layers and
1 hidden layer, using ReLU activations.

4.2. Results

As evaluation metrics we used both weighted accuracy and un-
weighted accuracy. For brevity we report unweighted accu-
racy results, noting that same trends form with respect to the
weighted accuracy metric. Fig. 1(a) shows the results of DR
applied to the RQA features on Emo-DB for all DR methods,
for different embedding dimensions L. We observe that Mod-
ified LLE achieves the best results when L = 50, followed
by SMACOF MDS in L = 25. Observe that all methods ex-
cept ISOMAP and Spectral Embedding manage to outperform
the original features of 432 dimensions. In Fig. 1(b), which
shows results for DR on IS10 features for Emo-DB, we can

1https://github.com/etzinis/nldrp
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(a) RQA feature set on Emo-DB (b) IS10 feature set on Emo-DB (c) Fused feature set on Emo-DB

(d) RQA feature set on IEMOCAP (e) IS10 feature set on IEMOCAP (f) Fused feature set on IEMOCAP

Figure 1: Results of DR for different feature sets on IEMOCAP and Emo-DB

observe a different pattern. Here the MDS algorithms per-
form best for every embedding dimension, followed by PCA,
all three of these methods outperforming the original feature set
of 1582 dimensions. This indicates that this feature set resem-
bles more a hyperplane in the high-dimensional space than a
non-linear manifold. Non-linear methods like LLE, ISOMAP
and Spectral Embedding underperform. For the fused feature
set in Fig. 1(c) we see again that distance-preserving transfor-
mations yield the best performance. Same patterns emerge in
IEMOCAP in Fig. 1(d), 1(e), 1(f), with Modified LLE achiev-
ing better performance for the RQA features and Pattern Search
MDS and PCA yielding best representations for IS10 features.
Notably in IEMOCAP, performance of the Autoencoder is sig-
nificantly better because there are more training samples. For
the experiments with the fused feature set we again observe a
consistent pattern in both Emo-DB and IEMOCAP, with MDS
yielding again the best representations followed by PCA. Fu-
sion is still beneficial after applying DR though we observe that
the structure of IS10 features dominates under fusion.

In Table 1 we show results for linear SVM, radial basis
function (rbf) SVM, kNN and LR. We reduce dimensionality
of IS10 features from 1582 to 25 dimensions and report un-
weighted accuracy (UA) on IEMOCAP. Low-rank representa-
tions produce very competitive results to the original sparse fea-
tures, while for linear SVM and kNN they even improve classi-
fication accuracy. Overall global, linear DR methods like MDS
and PCA produce the best representations.

4.3. Visualization

We include visualizations of feature maps reduced in 2D. We
focus on the best and the worst performing methods and com-
ment on some interesting observations.

Figure 2 demonstrates the results of PCA into two dimen-
sions, for a large proprietary and internally annotated dataset
containing speech segments from multiple domains such as

movies, TV series and interviews. Subfigures illustrate the dis-
tributions of the speech segments into the two PCA dimensions
for three emotional classes: anger, happiness and sadness. In
addition, we illustrate the decision surfaces for a simple kNN
classifier. The results demonstrate how the blue class (anger)
is similarly distributed between the red and green (sadness and
happiness respectively) for the two first domains (Series and
Movies) in Fig 2(a) and Fig. 2(b) respectively, based on the pri-
mary PCA dimension (x axis). On the other hand, for the inter-
views domain, the primary PCA dimension is not enough to dis-
criminate between the emotional classes as we see in Fig. 2(c).
On the contrary, the anger and happiness classes are mostly dis-
criminated based in the second PCA dimension. Interestingly,
this unsupervised distribution is quite similar to the Valence-
Arousal affective representation. This example demonstrates
how an unsupervised dimensionality reduction can be very sen-
sitive to changes in domain when illustrating emotional content.

Fig. 3(a) shows the 2D space created using Pattern Search
MDS, which maps the points inside an elongated disk area. We
can see on the left the anger points while the sadness points
are on the right. Close to anger is happiness samples, while
boredom is close to sadness. Other emotions lie in the mid-
dle. So it looks like that even in the 2D space MDS learns
meaningful representations, with x axis being a latent feature
that can encode arousal. On the contrary LLE, which tries to
preserve local neighborhoods and yields poor recognition accu-
racy on the fused feature set concentrates most samples in the
center as we can see in Fig. 3(b), but still we can observe low
arousal emotions (sadness) being separated from high arousal
ones (anger). In Fig. 4 we show ISOMAP embeddings for
two speakers in IEMOCAP. Observe, although ISOMAP can-
not separate emotions, it achieves a better discrimination re-
sult, in terms of speaker separation, for this experiment. One
could consider basing a speaker diarizer on geodesic distances
between samples.
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(a) Series (b) Movies (c) Interviews

Figure 2: Cross-domain decision regions with 2D DR

Table 1: Classification on IS10 features for IEMOCAP (UA)

SVM (linear) SVM (rbf) kNN LR
Pattern S. MDS 56.0 57.5 56.5 55.4
SMACOF MDS 55.8 58.5 56.7 55.8

PCA 55.8 57.7 56.2 55.8
ISOMAP 52.3 52.5 51.7 52.2

LLE 53.4 54.2 53.6 53.2
Modified LLE 54.6 47.0 53.9 55.5
Spectral Emb. 54.1 54.3 54.2 55.1
Autoencoder 55.4 57.8 56.3 55.5

Original 1582D 54.7 59.8 55.7 56.9

(a) Pattern Search MDS

(b) LLE

Figure 3: 2D DR for fused feature set on Emo-DB

Figure 4: Isomap on fused features for 2 IEMOCAP speakers

5. Conclusions
In this work we explore the effects of unsupervised linear
and non-linear DR on state-of-the-art speech features for SER.
We evaluate these algorithms for speaker independent SER on
IEMOCAP and Emo-DB. Experiments show that performance
of low-rank representations is competitive to original high-
dimensional representations. This phenomenon is hypothesized
to be caused by the curse of dimensionality, since the number
of samples in SER datasets does not span the high-dimensional
space. Interpretation of results and vizualization of 2D rep-
resentations gives interesting insights on the high-dimensional
structures. First insight is that IS10 features can be decomposed
by use of linear DR, e.g. by use of PCA or MDS algorithms.
Second, distance preserving DR can encode meaningful dimen-
sions, e.g. arousal. Third, speaker samples can be separated
by isometric mappings. Fourth, unsupervised DR can be rather
sensitive when illustrating cross-domain emotional content. Fu-
ture work will focus on creating end-to-end representations us-
ing autoencoders with distance preserving regularization and
investigating the interesting insight on using geodesic-distance
preserving representations for speaker separation.
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