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Abstract

A common issue when training multimodal architectures is that
not all modalities contribute equally to the model’s prediction
and the network tends to over-rely on the strongest modality. In
this work, we present M3, a training procedure based on modal-
ity masking for deep multimodal architectures. During network
training, we randomly select one modality and mask its features,
forcing the model to make its prediction in the absence of this
modality. This structured regularization allows the network to
better exploit complementary information in input modalities.
We implement M3 as a generic layer that can be integrated with
any multimodal architecture. Our experiments show that M >
outperforms other masking schemes and improves performance
for our strong baseline. We evaluate M> for multimodal senti-
ment analysis on CMU-MOSEI, achieving results comparable
to the state-of-the-art.

Index Terms: multimodal, masking, sentiment analysis,
dropout, CMU-MOSEI

1. Introduction

Multimodal machine learning approaches process information
from different sources and modalities to solve a given task [1].
Human perception itself, also relies on combination of multi-
modal cues, in order to improve the latent representations of
real world entities and concepts. Furthermore, advances in both
neuroscience and psychology indicate that multi-sensory inputs
are crucial for cognitive functions [2] since infancy [3]. Thus,
modeling and understanding multimodal interactions is a poten-
tial avenue for building better machine learning models.

Multimodal approaches have shown success in various
fields such as Visual Question Answering (VQA) [4], Auto-
matic Speech Recognition (ASR) [5, 6], Sentiment Analysis
[7, 8], Machine Translation [9] and Sound Localization [10].
Despite the promising results, it is often observed that multi-
modal architectures trained from scratch outperform their uni-
modal counterparts only by small margins [11, 12, 13]. This
result indicates that some inputs are able to dominate the learn-
ing process in multimodal networks and therefore make the net-
work’s prediction over-rely to this modality. One possible cause
for this behavior may be attributed to the different generaliza-
tion rates of each modality [13], as well as the inherent bias
in some modalities towards specific tasks, e.g. there are high
sentiment cues in the linguistic structure [12]. Current multi-
modal research is mainly focused on building fusion schemes
and learning better representations for the task in hand, but
addressing these issues is of vital importance for multimodal
learning.

In the emotion recognition and sentiment analysis fields
a diverse set of multimodal fusion approaches has been pro-
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posed. Zadeh et al. [7] utilize outer products between late
representations and construct a high dimensional fusion space
from which the prediction is made. Hierarchical fusion schemes
have been proposed based on attention mechanisms [14], as
well as deep fusion architectures [15]. Moreover, jointly learn-
ing multimodal representations has been explored in various
ways such as, Deep Canonical Correlation Analysis [16] and
cycle-consistency cross modal mappings [17]. Bagher et al.
[18] investigate architectures with neural memory-like modules.
Different architectural settings such as Transformers [19, 8],
Graph Neural Networks [20] and Capsules [21, 22] have also
been explored for multimodal fusion, as well as the use of large
pre-trained architectures by jointly fine-tuning them for multi-
ple modalities [12] or embedding multimodal information into
them [23]. Despite the significant improvements and the chal-
lenges tackled in the aforementioned works, none of them di-
rectly battles over-reliance on specific modalities.

We propose M3, which aims at directly tackling over-
reliance on specific modalities. Specifically, M> takes as input
various modalities, e.g. text, audio, visual. It then randomly
masks one of them or leaves the total multimodal representa-
tion unaffected. By randomly masking the representation of a
particular modality, we force the network to solve the task in
its absence during training. M? is applied at every time step
in the multimodal sequence, acting as a form of regularization.
Intuitively, our work can be seen as a form of structured dropout
[24] but differs from vanilla dropout in the sense that we mask
multimodal representations rather than units within an architec-
ture. We integrate M with a strong Long Short Term Mem-
ory (LSTM)-based baseline [25] and demonstrate the effective-
ness of the proposed approach for sentiment analysis on CMU-
MOSEI [18].

Our contributions are: 1) a generic light-weight layer which
can be embedded in multimodal architectures, 2) a compari-
son of M with other masking schemes which demonstrates the
need to mask the whole modality in order to achieve better per-
formance and 3) comparable to the state-of-the-art performance
in sentiment analysis task for the CMU-MOSEI dataset. Our
code is available as open-source'.

2. Proposed Approach

In this section we formally describe the proposed approach and
we introduce our baseline model and the M? layer.

Notation: A Bernoulli distribution is denoted as Be(p) where
p is the probability of sampling the zero value. The same holds
for the categorical distribution Cat(p1, p2, p3) where the result
is a binary triplet and also p1 + p2 + ps = 1. The modalities

Uhttps://github.com/efthymisgeo/multimodal-masking
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Figure 1: Baseline Architecture. The architecture consists of two larger parts, namely the Single Modality Encoders (DNN-I) and the
Cross Modal Network (DNN-II). The building blocks of the architecture are Bi-LSTMs, Scaled Dot Product Attention (Self Attn) and
a symmetric Cross Attention Mechanism (Cross Attn). The M? layer is inserted between DNN-I and DNN-II and takes as input the
representations mr, ma, my from DNN-I and feeds its output to DNN-II.

are denoted as 7', A, V for text, audio and video respectively
and are compactly represented as an index [ € {T', A,V }. The
representations for each modality, as well as their combinations
are denoted as m;. For example the textual representation is
mr, while the audio-visual is m 4. We also hypothesize that
each representation is a sequence of N d-dimensional vectors.

2.1. Baseline Method

Network Modules: The overall architecture consists of three
building blocks (Fig. 1). The first is a Bidirectional LSTM (Bi-
LSTM), the second is the scaled dot product attention mecha-
nism (Self Attention) [19] and the third is a cross modal atten-
tion module (Cross Attention) inspired by the one proposed in
Lu et al. [26].

Baseline Architecture: The network consists of two main sub-
networks as illustated in Fig. 1, namely the Single Modality En-
coders (DNN-I) and the Cross Modal Network (DNN-II). The
first network is responsible for processing the unimodal inputs
while the cross modal part extracts fused representations which
are used for the final prediction.

The Single Modality Encoder takes the input features
Xa, X7, Xy for each modality and encodes them using three
Bi-LSTMs, one for each modality. The hidden states are
reweighted using Self Attention blocks, which in turn produce
the unimodal encodings mz, ma, my.

The Cross Modal Network is responsible for capturing
cross-modal interactions. It consists of four Cross Attention
modules and a Bi-LSTM which performs the final prediction.
The Cross Modal Network takes as input the single modality
representations and uses symmetric cross attention to capture
interactions between T, A, V' as illustrated in Fig 1. Specifically
it calculates mra, mrv, may which capture all combinations
of mp, ma, my, as well as mp 4y which fuses audio-visual
with textual information.

We describe in detail the symmetric cross-modal attention
mechanism we use. Consider my, m; € REXN*4 where
k # [ are modality indicators. Given the input modality rep-
resentations, we can construct keys K; WZK my, queries
Qr = Wkak and values V; = W,¥'my, which are learnable

{K.,Q,V}
W{k,l} . We

can now define the cross-modal attention layer as:

due to their corresponding projection matrices
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where s(-) denotes the softmax function and B, N, d are the
batch size, sequence length and hidden size respectively. The
symmetric attention is defined by summing two cross-modal at-
tentions as:

>Vl+mk7 ey

(@)

These crossmodal representations are concatenated (||),
along with the unimodal representations m 4, mr, my to pro-
duce the fused feature vector 7, € REXN*74 i Eq. (3).

MEl = Gkl + alk

m=mr || ma || mv || mrav || mav || mov || mra (3)

We feed m into a Bi-LSTM and we then take the last hidden
state from both directions and concatenate them into a single
representation which is denoted as mo. This final representa-
tion is fed to a linear layer which performs regression.

2.2. MultiModal Masking (M?>)

The proposed method is illustrated in Fig. 2. It takes as in-
put representations from three modalities, e.g. text, audio and
visual, which are extracted from a neural architecture. For-
mally described M 3 takes as input mr,ma, my which lie in
REXNXd wwhere B is the batch size, N the sequence length and
d the dimension of the processed multimodal input sequence?.
It is then applied at every sample of the batch and at every time
step ¢ in the multimodal sequence of length V.

In particular it decides whether to mask one of the given
modalities or leave them unaffected, based on a masking proba-
bility, denoted as pas. We introduce this hyperparameter be-
cause it allows us to control the rate of masking. Formally
this is described as sampling from a Bernoulli distribution, i.e.
un ~ Be(par), where pas is the probability which decides
whether to mask or not. In the case of not masking (ur = 1),
M? simply leaves all the modality representations unaffected
and feeds them to the next module.

20ne may use different sets and number of aligned input modalities
with varying feature dimensions. We describe the case of aligned text,
audio and visual modalities with common dimension d.
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Figure 2: Each modality is illustrated with a different color. The modality features are fed to a neural architecture (DNN-I) which
creates high level unimodal embeddings. The output sequence of the first DNN is in turn fed to the M> Layer. The M? layer processes
these sequential representations by randomly choosing whether to mask or not at each time step. In the case of masking a modality is
chosen based on the modality probabilities. The masked output is fed to the rest pipeline (DNN-1I) which is responsible for making the
final prediction. M can be used as a drop-in module in any multimodal architecture and can be extended to an arbitrary number of

modalities.

In the scenario where modalities with stronger relative per-
formance are present, one may wish to increase the masking rate
of the dominant modalities. This can lead to increased contribu-
tion of the weaker modalities and stronger fusion results. To this
end we introduce pr, = {7, 7a, v}, which is set of hyper-
parameters that control the individual modalities masking rate
and are called modal probabilities. A categorical distribution is
then sampled as of urr ~ Cat(wr,ma,mv) to decide which of
the three modalities will be masked. The total sampling process
of the M? layer can be described as is represented as:

“

and is a binary value for each of the involved modalities. The
output of M3 for a given sample i of the multimodal sequence
can be expressed as

K3 = i + (]— - NJ\/I),U/H = (l’LT7:LI’A7l’LV)

M?(mip, ml, my; par, pr) = [prmip, pami, pymi] (5)

where m! denotes the representation for each modality ! €
{T, A, V} and lies in R? and the index 4 depicts the time step
of the sequence.

M3 Architecture: The augmented baseline with M?> layer is
the following. The Single Modality Encoders (DNN-I) (Fig. 1)
output is fed to the M layer and its output is given as input to
the Cross Modal Network (DNN-II).

3. Experimental setup

We evaluate M> on CMU-MOSEI for sentiment analysis. The
dataset contains 23, 454 YouTube video clips of movie reviews
annotated at the video level by humans for sentiment and emo-
tion scores. Sentiment scores range from -3 (strongly negative)
to 3 (strongly positive) and emotion annotations. Audio se-
quences are represented with 74 COVAREP features [27] and
visual sequences using Facet features®. Video transcriptions are
segmented in words and represented using GloVe [28]. All se-
quences are aligned to the transcribed words. Standard train,
validation and test splits are provided. For all our experiments
we use Bi-LSTMs with hidden size 100. All projection sizes
for the attention modules are set to 100. We use dropout with
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drop rate 0.2. We use Adam [29] with learning rate 5e — 4
and halve the learning rate if the validation loss does not de-
crease for 2 epochs. All models are trained using batch size
B = 32. We use early stopping on the validation loss (patience
10 epochs). Models are trained for regression on sentiment val-
ues using Mean Absolute Error (MAE) loss. We use standard
evaluation metrics: 7-class (i.e. classification in Z N [—3, 3]),
binary accuracy and Fl-score (negative in [—3,0), positive in
(0, 3]), MAE and Pearson correlation coefficient between model
and human predictions.

4. Experiments

In this section we compare M with the baseline and the state-
of-the-art fusion methods for sentiment classification for CMU-
MOSEI. We evaluate different masking schemes and analyze
the performance of M3 for different sets of hyperparameters.

4.1. Masking Schemes Ablation

In Table 1 we compare M? with different masking schemes.
The baseline model is presented in Section 2.1 and its perfor-
mance is shown in the first row. Random Mask does not take
into account structural modality information. Similar to dropout
we sample random feature indices from a Bernoulli distribution
across modalities and set those features to zero. For Soft M3
we choose a random modality, as described in Eq. (4) and sam-
ple a mask only for the chosen modality. In other words, we
mask only a part of the chosen modality. M3 takes a more
radical approach, i.e. we randomly choose a modality for each
sample and time step in the batch and set all features to zero
for the chosen modality. In Table 1 we can see that M out-
performs the baseline, as well as all other masking schemes for
all metrics by a significant margin. Interestingly Soft M3 does
not always outperform Random Mask, so limiting dropout-like
masking within a specific modality is not enough. One has to go
all the way during training and force the networks predictions to
be made in the absence of masked modalities to observe a per-
formance gain. For all the examined schemes the masking rates
are tuned independently for fair comparison. Also note that we
did not tune the modal probabilities for the M?> approaches, i.e.
m =1/3.



Table 1: CMU-MOSEI Sentiment Analysis performance.

We randomly drop a modality for each method. The modality masking

probability is tuned separately for each method for fair comparison. The modalities pose equal masking probability. Averages over 5

runs.

Acc? F1 Acc” Corr MAE
Baseline 82.07+£0.6 8223+£05 51.49+0.6 0.695+£0.005 0.590 + 0.004
Random Mask  81.97+0.7 82.294+0.5 51.66+0.8 0.700 +0.009 0.588 4 0.008
Soft M3 82.31+£06 8259+05 51.13+£0.6 0.691+0.007 0.592 + 0.006
M3 82.46 0.5 82.64+0.5 51.78+0.6 0.702+0.004 0.586 £ 0.004

4.2. Comparison with the state-of-the-art

Table 2: Comparison with the state-of-the-art in CMU-MOSEI
for Sentiment Analysis task.

Acc? F1 Acc’ Corr  MAE
RAVEN [30] 79.1  79.5 50.0 0.662 0.614
MCTN[17] 79.8  80.6 49.6  0.670  0.609
M.Rout[22] 81.7 818 51.6 - -
MulT [8] 825 823 51.8 0.703 0.580
M? (ours) 82.5 8292 51.89 0.700 0.586

In Table 2 we compare M3 with state-of-the-art approaches
for MOSEI sentiment classification. M? achieves state-of-the-
art performance for binary F1 score with 0.62% absolute im-
provement and seven class accuracy with 0.09% absolute im-
provement, while achieving comparable performance for binary
accuracy and correlation. Note that our baseline model consists
of LTSMs with attention modules instead of Transformers as
in [8]. Finally, observe that just the introduction of M? in our
baseline model yields a performance boost that leads to compa-
rable to the state-of-the-art results.

4.3. Modality Masking Hyperparameter Analysis

We also perform an analysis of the performance of M? with
respect to the hyperparameters pys and mr. Specifically par
is the probability that controls if masking is performed, or if
modality features are left unaltered. If masking is performed,
we mask text features with probability 77, while audio and vi-
sual features with equal probabilities 1‘% We choose to in-
vestigate the text masking probability, because text is the dom-
inant modality in CMU-MOSEI for sentiment classification.
Intuitively we want to mask the dominant modality more of-
ten, so that we force the network to use information encoded
in the weaker audio and visual modalities. In Table 3 we see
the performance of M? with respect to these hyperparameters.
We experiment with 77 = 0.33 and 77 = 0.6 for various
values of pas. All results are averaged over 5 runs (stds are
in the same range as in Table 1). We observe that generally
pum € {0.2,0.25} yields the best performance. As expected the
larger value for 77 yields better models in general that achieve
higher accuracy scores, though by a small margin. This is an
indication that randomly forcing the absence of the dominant
modality during training can lead to better solutions.
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Table 3: M3 hyperparameter analysis. The parameter pas de-
notes the probability of masking one out of the involved modal-
itites, while T is the probability of dropping the text modality.

T DM Acc? F1 Acc” Corr MAE
0.33 0.10 82.15 82.45 51.80 0.699 0.588
0.33 0.20 82.46 82.64 51.78 0.702 0.586
0.33 0.25 82.21 82.60 51.10 0.695 0.589
0.33 0.40 81.84 82.19 51.50 0.695 0.589
0.60 0.10 82.23 82.52 51.88 0.699 0.588
0.60 0.20 82.31 82.53 51.84 0.699 0.587
0.60 0.25 8250 8292 51.89 0.700 0.586
0.60 0.40 82.12 82.25 51.25 0.699 0.590

5. Conclusions

In this work we present M3, a light-weight masking layer for
multimodal training. M? can be integrated into any multimodal
architecture to improve performance for multimodal tasks and
is also extendable to an arbitrary number of modalities. The
core motivation of M? is to randomly force the network predic-
tions to be made without use of the dominant modalities dur-
ing training, in order to enhance the contribution of the weaker
modalities. Therefore M> randomly selects one of the modali-
ties for a percentage of the training samples and sets its features
to zero. We experiment with different masking strategies and
M? yields the best results. In addition, M?> consistently im-
proves performance for our strong LSTM with attention base-
line, especially when we select to mask the dominant modality
(text) with higher probability. The performance improvement
obtained by integrating M? into the baseline model leads to
comparable with the state-of-the-art results. In the future we
plan to integrate M?® with more architectures (Transformers)
and experiment with more diverse multimodal tasks, e.g. Mul-
timodal ASR and VQA, which would involve more than three
modalities. Finally we plan to experiment with scheduling the
mask probability of each modality during training in order to
better control the learning rate of each modality.
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