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Abstract—Designing powerful adversarial attacks is of
paramount importance for the evaluation of `p-bounded ad-
versarial defenses. Projected Gradient Descent (PGD) is one
of the most effective and conceptually simple algorithms to
generate such adversaries. The search space of PGD is dictated
by the steepest ascent directions of an objective. Despite the
plethora of objective function choices, there is no universally
superior option and robustness overestimation may arise from
ill-suited objective selection. Driven by this observation, we
postulate that the combination of different objectives through
a simple loss alternating scheme renders PGD more robust
towards design choices. We experimentally verify this assertion
on a synthetic-data example and by evaluating our proposed
method across 25 different `∞-robust models and 3 datasets. The
performance improvement is consistent, when compared to the
single loss counterparts. In the CIFAR-10 dataset, our strongest
adversarial attack outperforms all of the white-box components
of AutoAttack (AA) ensemble [1], as well as the most powerful
attacks existing on the literature, achieving state-of-the-art results
in the computational budget of our study (T = 100, no restarts).

Index Terms—Adversarial Attacks, `∞-bounded robustness,
Projected Gradient Descent, RobustBench Benchmark

I. INTRODUCTION

The advent of Deep Learning (DL) caused a paradigm shift
and revolutionized the way that various interesting applications
are approached. Such a wide adoption, however, demands from
the research community to comprehend the scenarios where
Deep Neural Networks (DNNs) malfunction. This necessity
becomes even more imperative when considering the abun-
dance of safety-critical applications that do not leave room for
complacency, e.g., autonomous driving. Unfortunately, DNNs
have significant failure modes and behave counterintuitively. A
prominent instance of this behaviour is illustrated by Szegedy
et al. [2], where they showcase that DNN-based image classi-
fiers are vulnerable against adversarial examples. These exam-
ples arise from applying humanly imperceptible perturbations
to clean images, which are capable of degrading the model’s
predictive performance. This finding triggered research interest
on two fronts: Adversarial Attacks, which are algorithms to
generate such malicious examples and Adversarial Defenses,
which are methods of increasing the robustness of neural
networks. Adversarial robustness is primarily studied through
the `p-bounded threat model, where the perturbation’s `p-norm
is bounded by a small constant.

The robustness of Adversarial Defenses, on a given dataset,
is estimated by the rate of test set’s adversarial examples that
the defense can properly classify. Of course, the estimated rate
(also called robust accuracy) depends on the strength of the
attacking algorithm that will be used for evaluation. Employing
weak attacks to evaluate robustness creates a false sense of
security, an issue widely known as robustness overestimation
[3]–[5].

Arguably, Projected Gradient Descent (PGD) is the most
popular adversarial attack used to evaluate `p−bounded ro-
bustness. PGD operates by iteratively following the steepest
ascent directions of an objective function, often called the
surrogate. PGD has raised in many guises in the adversarial
attack literature: Goodfellow et al. [6] propose to attack net-
works through the Fast Gradient Sign Method (FGSM), which
takes a single normalized step, i.e., applying the sign function
in the case of `∞-norm, towards the steepest ascent direction.
Kurakin et al. [7] demonstrate that the multi-step variants of
FGSM are capable of producing significantly stronger attacks.
Dong et al. [8] suggest a modification of the iterative FGSM
that integrates a momentum term. Madry et al. [9] link the
iterative FGSM with the classical optimization algorithm of
PGD.

Despite that PGD combines both simplicity (in terms of
implementation) and strength, it has been shown that its
performance can be hindered by ill-suited selection of hyper-
parameters, e.g., fixed step size [1]. Another hyperparameter
of consideration is the surrogate loss, for which literature
has converged into 3 options: Cross-Entropy (CE) [6], [9],
Margin (a.k.a. CW) loss [10] and the Difference of Logits
Ratio (DLR) loss [1], with the appealing property of scale-
invariance. However, empirical evidence (e.g., as in Figures 9-
11 of [1]) shows that there is no universally superior objective
and its effectiveness depends on the architecture, weights,
training dataset etc. On top of this, certain choices may be
improper in special problematic cases: 1) CE yields zero
gradients for inputs where the classifier assigns the entire
probability mass to the ground truth class [1], [10], 2) both
CE and CW are not scale-invariant hence logit rescalings may
induce gradient masking [1] and 3) Ma et al. [11] assert that
objectives which involve multiple logit terms, i.e., all three of
CE,CW and DLR, may suffer from the problem of gradient
imbalance where logits have quite disparate magnitudes and
one term alone steers the optimization trajectory towards non-
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optimal solutions.
In this work, PGD is studied from the perspective of

surrogate loss. In order to alleviate potentially weak PGD
performance arising from poor surrogate selection, we propose
to combine different objectives in the same run of PGD.
Hopefully, this combination will render PGD less dependent
to the surrogate hyperparameter. We identify that a simple
alternation of objectives during PGD is sufficient to induce
significant boost on the PGD performance over the single loss
variants. Further qualitative analysis implies that the switching
between different objectives helps the algorithm to expand its
search space, visiting more distant intermediate points during
its execution.
In this paper, we make the following key contributions:
• We propose to combine multiple objectives during PGD

through alternating between them during optimization,
in order to alleviate potential flaws of each objective.
Our proposed strategy outperforms the single-loss PGD
variants in 25 out of 25 (15 on CIFAR-10, 6 on CIFAR-
100 and 4 on ImageNet) tested `∞−bounded robust
models.

• For the CIFAR-10 dataset, our attack outperforms the
three white-box components of AutoAttack [1]: APGDCE,
APGDDLR and FAB attack [12]. Furthermore, in most
cases our attack achieves higher Attack Success Rate
(ASR) than the strongest baselines (for T = 100 iter-
ations and R = 1 restart) in the literature: GAMA-PGD
[13] and MD attack [11].

• We present extensive experimentation and analysis re-
garding the proposed alternation scheme, including: 1)
A synthetic example which highlights how PGD with
a single loss can fail, 2) Qualitative analysis indicating
that switching losses promotes search diversity and 3)
Ablation experiments which demonstrate that this loss
combination strategy is more effective than two other
combining methods.

The remainder of this paper is organized as follows: Section II
provides the necessary background, covering basic aspects of
the worst-case `p−bounded adversarial robustness, Section III
briefly discusses research work related to PGD-based attacks,
since PGD is the main topic of our study. In Section V we
conduct numerous experiments to verify the effectiveness of
our proposed method, whereas in Section VI we discuss how
our study differs from previous related work.

II. BACKGROUND

A. Notation

Image-label pairs are denoted as (x, y) ∈ X × Y where
X ⊆ RD,Y ⊆ Z. The classifier’s logit representation will
be denoted as z(x) ∈ RC (or simply z), where C: the total
number of classes. Applying a softmax layer to the logit vector
produces the probability vector p(y|x). The classification
decision will be denoted as f(x), hence f(x) = arg max

i∈[C]

z(x)i,

where [C] = {1, ..., C}. The surrogate loss L(z(x), y) (which

will also be referred as L(x, y), for brevity’s sake), e.g., cross-
entropy, measures the model’s ability to assign the label y to
example x.

B. Threat Model

The constraint of creating an imperceptible perturbation is
approximated through the bounded `p−norm condition. The
generation of adversarial attacks should obey this restriction,
returning an output that lies within the `p−ball of radius ε
around the clean input x. Hence, the search space of potential
adversaries for the image x can be expressed as:

S(x) = {x′ : ‖x− x′‖p ≤ ε} (1)

Despite that the `p−bounded threat model is only a crude
approximation of true similarity between data samples like
images, solving the problem of `p−bounded robustness can
be viewed as an important stepping stone towards confronting
more realistic scenarios.

C. A taxonomy of `p−bounded adversarial attacks

Next we present a basic categorization of adversarial
attacks based on their capabilities during generation and their
end goal.

Adversary’s Knowledge. Based on the amount of information
that the adversary has at its disposal, attacks can be divided
into two major categories: white-box and black-box. In the
former, the attacker has access to every aspect of the model:
its architecture, weights and training data. This allows the
adversary to obtain the network’s gradients w.r.t. the input
which is particularly useful when creating attacks. In the latter
category, however, the adversary can only use the model as an
oracle, feeding an input point and getting access to the output
vector, or sometimes just to the output class.

Despite that typical real-world scenarios are more similar
to the black-box setting, white-box attacks constitute a
much more stronger threat model. Therefore, the evaluation
of adversarial defenses is typically performed based on
white-box attacks.

Low Confidence vs Low Distortion. Attacks are also divided
into minimum-confidence and minimum-norm. In the former,
the attack algorithm is based on the following formulation, for
the input-label pair (x, y):

δ : arg max
δ

L0/1(f(x+ δ), y) s.t. x+ δ ∈ S(x) (2)

where L0/1(f(x), y) = 1[f(x) 6= y] is the 0-1 loss, which
due to its discontinuity is replaced by some surrogate loss L
such as cross-entropy. These attacks aim to reduce the ground
truth label’s confidence as much as possible by spending
the entire attack budget ε, hence they typically lie on the
boundary surface of the feasible set S. The most prominent
examples of minimum-confidence adversarial attacks is the
Fast Gradient Sign Method (FGSM) [6], the Iterative-FGSM
[7] and Projected Gradient Descent (PGD) [9].



Minimum-norm attacks aspire to find the smallest possible
perturbation that leads to misclassification:

δ : arg min
δ
‖δ‖p s.t. f(x+ δ) 6= y (3)

where y: the ground-truth label of x. Such attacks usually
find adversaries that are within smaller `p-distance from
the clean input x than the perturbation bound ε. Popular
examples of this category are: Carlini-Wagner (CW) attack
[10], DDN attack [14], Fast Minimum Norm (FMN) [15] and
Fast Adaptive Boundary (FAB) attack [12] among others.

Untargeted vs Targeted. Another criterion of dividing
adversarial attacks is whether the adversary desires to force
a specific label to the attack. In targeted attacks, the attack is
considered successful if the corresponding adversarial example
is classified into a certain target class. In untargeted attacks,
the goal is simply to produce an example which is incorrectly
classified, with no constraint on its new label. Usually, the
transition between the two categories is as simple as slightly
modifying the objective function, i.e., from descending the
target label’s confidence to ascending the ground-truth label’s
confidence.

D. Empirical Adversarial Defenses

Training `p−robust neural networks, i.e., networks that are
resilient against `p-bounded adversarial attacks, is a compli-
cated problem since we aspire to simultaneously realize two
goals. First, the classifier is asked to perform well on unseen
examples drawn from the same distribution as the examples
used during training. An additional requirement is to find
networks that produce smooth predictions, assigning the same
label to all data residing inside the `p−ball of such examples.
The most standard way of increasing `p−bounded robustness
is Adversarial Training (AT) [6], [9]; in AT, the defender aims
to minimize the robust expected risk:

Rfrob(θ) = E(x,y)∼D

[
max

δ:‖δ‖p≤ε
1[fθ(x+ δ) 6= y]

]
(4)

The inner expression coincides with the task of finding
the worst-case `p−bounded adversarial example. Madry et al.
[9] confront the problem through the first-order method of
PGD. An important barrier of this method is the additional
computational overhead. The iterative PGD process renders
this method costly in terms of compute, hence a line of
research aims to increase robustness using one-step adversaries
[16]–[19], in order to restrain the overall training time to
similar levels as with standard training. Another important
work on adversarial defenses is the TRADES framework,
introduced by Zhang et al. [20]. The robust expected risk of
Equation 4 can be decomposed as the sum of two individual
terms. The first term represents the classification error, where
the optimization searches parameters that generalize well. The
other term, dubbed as boundary error, can be considered
as exerting a regularizing effect, where it imposes decision
“smoothness” between inputs inside the same `p−ball.

Schmidt et al. [21] provide evidence that adversarially
training classifiers may require an increasing amount of
data. Following this, many works [22]–[24] explore the use
of both pseudo-labeled additional data and elaborate data
augmentation techniques.

Robustness Overestimation. Evaluating the true degree of
`p-bounded robustness of empirical methods is intractable,
since one needs to calculate the average 0-1 risk on a held-
out test set. Typically, the defender deploys a strong attacking
algorithm to obtain a lower bound on the true risk. However,
this trial-and-error technique can provide misleading results.
Failing to select a proper attacking algorithm creates an
inaccurate sense of security [3], [4], [25]. Importantly, these
works propose numerous indicators that demonstrate whether
the evaluation suffers from this issue and guidelines of how
to properly evaluate a defense.
The introduction of RobustBench [26], based on the AutoAt-
tack ensemble (comprised of three white-box [1], [12] and one
black-box [27] methods), contributed to a consensus regarding
the evaluation of `p−bounded robustness: A newly proposed
defense is first “passed” through an AutoAttack evaluation,
and then the defender can also perform adaptive attacks [25],
based on potential model-specific weaknesses.
Despite the general adoption of AutoAttack as the standard
way to perform first-order robustness evaluations, the commu-
nity is constantly exploring faster and more powerful attack
ensembles [28], [29].

III. RELATED WORK

Projected Gradient Descent (PGD) [7], [9] is the most
popular minimum-confidence attack. PGD has been the de
facto standard for producing `p−bounded adversarial attacks,
especially in the case of p = ∞. In short, PGD can be
expressed as:

x(t+1) = PS(x)
[
x(t) + η(t)δ(t)

]
(5)

where x(t): the iterate, η(t): step size, δ(t): update rule of t-
th iteration and PS : the projection operation, which maps the
updated iterate into the feasible region S, which in our case is
the `p−ball of radius ε around x. Typically, this procedure is
repeated multiple times from different random initializations.
For a more comprehensive view of how PGD is used to
generate adversarial attacks, we refer to the work of Gowal
et al. [30], where they present a “holistic” pseudoalgorithm.

In the following discussion we present how one can
manipulate the basic building blocks of PGD, namely the
optimizer, step size, initialization strategy and surrogate loss,
in order to improve its adversarial generation stregnth.

Optimizer. The optimizer determines the form of the update
rule δ(t). In its simplest version, assuming the surrogate loss
L(x, y), PGD follows the steepest direction of unit `p-norm,
e.g., the sign of ∇x(t)L(x(t), y) in the case of p = ∞, or
a simple norm-rescaling when p = 2. In the C&W attack



[10], the proposed objective is optimized through Adam [31].
The Adam optimizer has also been leveraged in PGD-based
works [4], [30]. Dong et al. [8] suggested the incorporation
of momentum [32] in the PGD update rule. Subsequently,
Croce and Hein [1] proposed the AutoPGD (APGD) variant,
wherein the update term is augmented by momentum.
Yamamura et al. [33] developed the Auto Conjugate Gradient
(ACG) method, which is an elaborate optimizer, adjusting the
update rule based on accumulated gradient information from
previous steps. ACG is experimentally shown to outperform
APGD for a sizable collection of robust models.

Step Size. Another hyperparameter which affects the
performance of PGD is the step size η(t). In early works,
its value is held constant during the entire optimization
procedure, e.g., to α = ε/4 for `∞-attacks in CIFAR-10.
Croce and Hein [1] conduct large-scale experiments regarding
the optimal fixed value, but one immediate corollary is that
it greatly depends on the model. Generally, the common
trend is to perform some kind of scheduling, where the
step size is gradually reduced over time: In [30], [13], the
authors apply ten-fold drops at two intermediate timesteps;
Ma et al. [11] propose a cosine-annealing scheme, where
the step size decays from 2ε to 0. In their recent work,
Liu et al. [28] adopt a similar decaying strategy. Another
interesting way of manipulating this hyperparameter is as
in the AutoPGD method [1]; They initially set it to a large
value α = 2ε, in order to explore the search space sufficiently
well. Then, as the optimization proceeds and the iterate gets
closer to some local optimum, the need of a more localized
search calls for smaller step sizes. Hence, it is halved in
specific checkpoints, according to the optimization progress,
i.e., based on whether the objective function is reducing or not.

Initialization. Proper initialization plays also a crucial role
in the final performance. Typically, the initial point x(0) can
be either set to the clean image x, or alternatively, random
noise may be added to the clean image: x(0) = x+ ζ, where
ζ is drawn from some noise distribution. The attack is then
repeated multiple times, initialized from different starting
points. Tashiro et al. [34] suggest that random initialization
may lead to starting points with nearly identical output space
representations, hence the attack generates similar results even
if executed for many restarts. Output Diversified Initialization
(ODI) [34] counteracts this by maximizing the similarity of
starting point’s logit vector with a random output direction,
in the first few PGD iterations. Recently, Liu et al. [28]
introduced Adaptive AutoAttack (A3), the new state-of-the-art
attack ensemble. A3 uses an adaptive initialization strategy,
where the starting points are generated by ODI, but instead
of following random output space direction, the vector is
selected according to prior knowledge of perturbations that
led to misclassification.

Surrogate Loss. The maximization of 0-1 loss is intractable
for complex function classes as those represented by deep

neural networks [35]. It is common to substitute it with a
surrogate, differentiable loss which is amenable to optimiza-
tion methods. A natural candidate is the cross-entropy (CE)
objective, which coincides with the negative log-likelihood
of the ground truth class. In their seminal work, Carlini
and Wagner [10] tested various formulations, obtaining the
best performance for the so called margin (or CW) loss. A
shared defect in both of these objectives is the lack of scale-
invariance, which may be translated in deteriorated perfor-
mance due to gradient masking. Croce and Hein [1] introduce
the Difference of Logits Ration (DLR) loss, which rescales the
margin loss to acquire the property of scale-invariance. Most of
the literature involves these three options, whose expressions
are included below for completeness:

CE(x, y) = − log p(y|x) = −zy + log

C∑

j=1

exp(zj)

CW(x, y) = −zy +max
j 6=y

zj

DLR(x, y) = −zy +maxj 6=y zj
zπ1
− zπ3

(6)

where zπ: the logit vector sorted in descending order. Gowal et
al. [30] propose the MultiTargeted PGD variant which divides
the iteration budget into runs of equal size, where each run
optimizes the targeted margin loss, for a different target label
per run. Their experiments indicate that the MultiTargeted
strategy exploits more judiciously the given computational
budget. Sriramanan et al. [13] augment the standard margin
loss expression with a regularization term which is set to
the MSE between the logit vector of the adversary and its
clean counterpart. The weighting coefficient of MSE term is
gradually decayed to zero. Ma et al. [11], in an effort to address
the issue of imbalanced gradients, optimize only one of the
two margin loss terms for the first half of iterations before
switching to the typical expression which contains both terms.
In the next restart, they repeat the process by using the other
term for the first stage of optimization.

IV. METHODOLOGY

Our work is motivated by the observation that a single sur-
rogate loss is unable to perform equally well across different
robust models. Croce and Hein [1] provide strong empirical
evidence to back up this argument. Specifically, in their study
they investigate the effectiveness of three objectives: CE,
CW and DLR. These three aforementioned objectives have
expressions that are distinguished by small differences, yet
each option can profoundly influence the Attack Success Rate
(ASR) of PGD. Of course, this phenomenon is not surprising at
all: the optimization space coincides with the high-dimensional
pixel space of natural images, hence even just a rescaling that
links the CW with DLR loss is capable of producing non-
trivial discrepancies in the respective loss landscapes. Above
all, it is critical to bear in mind the surrogate loss as another
hyperparameter, akin to step-size or optimizer, which has the
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Fig. 1. Top row: The level sets of CE and CW losses (w.r.t class y = 1). Bottom row: (Left) Intermediate PGD points, executed with a single surrogate,
where red circles indicate PGD with CE and the yellow triangle PGD with CW, (Right) Intermediate PGD points, but here the objective changes in the middle
point (T = T/2) of the procedure (green crosses). The blue dashed circle visualizes the boundary surface, which in this case is a disk of radius ε = 0.4
centered at x, of the feasible PGD solutions.

potential of causing some degree of robustness overestimation
on its own right.

The most straightforward mitigation for this behaviour is
to aggregate many different formulations in the same run of
PGD. The aggregation of objectives may be instantiated in
a variety of ways. Our work is based on a simple idea for
performing such an aggregation: Divide the PGD process into
multiple successive stages, where the surrogate loss changes
in the beginning of every stage, and the starting point of every
stage coincides with the last step iterate of the previous one.
This procedure, when using K stages, can be formulated as:

L(x, y) =





L1(x, y), if t < T
K

L2(x, y), if T
K ≤ t < 2T

K
...

LK(x, y), if (K−1)T
K ≤ t < T

In this paper, we will consider the cases where K = 2, 3,
using for surrogates the most common choices: CE, CW and
DLR.

Notice how this alternation strategy can be viewed as a
more complicated initialization: Each PGD stage starts from

the initial point x(0) = x + δ, where δ: the accumulated
perturbation of all previous stages. Of course, an immediate
extension is to consider variable starting timesteps tk for stage
k, but in this work, we heuristically set equal time intervals
between all stages.

In the remaining discussion, our loss switching variant will
be abbreviated as follows: PGDL1&L2&...&LK

, e.g., PGDCE for
simple PGD with CE surrogate and PGDCE&CW for two-stage
PGD with CE and CW.

V. EXPERIMENTS

A. Toy Example.

We present a toy example which elucidates that using a
single surrogate during PGD may deteriorate performance. As-
sume a 2D problem of 3-way classification (classes: y1, y2, y3).
Inputs are x = (x1, x2)

T and the linear classifier is z =
(z1, z2, z3)

T = Wx, with:

W =




0.3 −0.3
1 −0.01

−0.25 0.75






Dataset # Paper Model ID in RobustBench leaderboard Architecture Standard Acc. (%)

CIFAR-10

1 [26] Engstrom2019Robustness ResNet-50 87.03
2 [22] Carmon2019Unlabeled WideResNet-28-10 89.69
3 [36] Hendrycks2019Using WideResNet-28-10 87.11
4 [37] Zhang2019You WideResNet-34-10 87.20
5 [20] Zhang2019Theoretically WideResNet-34-10 84.92
6 [38] Wu2020Adversarial WideResNet-34-10 85.36
7 [39] Sehwag2021Proxy R18 ResNet-18 84.59
8 [19] Andriushchenko2020Understanding PreActResNet-18 79.84
9 [40] Dai2021Parameterizing WideResNet-28-10 87.02
10 [41] Gowal2021Improving 28 10 ddpm 100m WideResNet-28-10 87.50
11 [42] Huang2021Exploring ema WideResNet-34-R 91.23
12 [43] Zhang2020Geometry WideResNet-28-10 89.36
13 [44] Rade2021Helper R18 extra PreActResNet-18 89.02
14 [45] Addepalli2021Towards RN18 ResNet-18 80.24
15 [46] Sehwag2020Hydra WideResNet-28-10 88.98

CIFAR-100

1 [44] Rade2021Helper R18 ddpm PreActResNet-18 61.50
2 [47] Rebuffi2021Fixing R18 ddpm PreActResNet-18 56.87
3 [45] Addepalli2021Towards PARN18 PreActResNet-18 62.02
4 [18] Rice2020Overfitting PreActResNet-18 53.83
5 [36] Hendrycks2019Using WideResNet-28-10 59.23
6 [47] Rebuffi2021Fixing 28 10 cutmix ddpm WideResNet-28-10 62.41

ImageNet

1 [48] Salman2020Do R18 ResNet18 52.92
2 [49] Salman2020Do R50 ResNet50 64.02
3 [26] Engstrom2019Robustness ResNet50 62.56
4 [17] Wong2020Fast ResNet50 55.62

TABLE I
OUR MODEL COLLECTION, CONSISTING OF 25 `∞-BOUNDED DEFENSES OBTAINED FROM THE MODELZOO OF ROBUSTBENCH.

Consider an input x = (−0.45,−0.8), belonging to the class
y1. The linear model classifies it correctly to its ground-truth
class, since z1 > max(z2, z3). Suppose that our goal is to
generate a perturbation δ of bounded `2-norm (say ε = 0.4).
A straightforward way to achieve this is by executing PGD,
maximizing a surrogate loss, e.g., CE or CW. For the input x
of class y1, these losses are analytically calculated as:

CE(x, y) = −z1 + log
( 3∑

j=1

exp(zj)
)

CW(x, y) = −z1 +max(z2, z3)

Figure 1 illustrates the level sets of these two objectives. In the
bottom left panel of Figure 1, we visualize the optimization
trajectories of PGD for different choices of surrogates. The
learning rate is held fixed to η = 2ε and PGD is executed
for T = 50 iterations. The blue dashed circle denotes the
boundary of the feasible region, whereas the circle, triangle
and cross-shaped points show the intermediate points of PGD
(x(1), ...,x(50)). Using the CE as surrogate (red circle points)
manages to successfully perturb the input x, but CW objective
(yellow triangle points) fails because the linear level sets
produce gradients that gets the optimization jammed on a
single point. The bottom right panel, however, demonstrates
that the loss alternation method (green cross points) isn’t
affected from the failure mode of CW and finds an adversary.

Despite being restricted, this synthetic toy example under-
pins the argument that using multiple surrogates in the same
run of PGD renders the overall procedure more “robust” in the
objective selection: Even if some individual choice is infertile

for whatever reason, the other alternatives may be enough to
find an adversary.

B. Models and Datasets

We will conduct our experiments in a sizable collection
of 25 `∞-bounded robust models. Specifically, the collection
comprises of 15 and 6 defenses on CIFAR-10 and CIFAR-100
[50] respectively, trained with ε = 8/255, and 4 defenses on
ImageNet [51], trained with perturbation bound ε = 4/255.
The models are pre-trained and readily obtained from the
ModelZoo of RobustBench [52] library. Our collection’s robust
models originate from various recent works: [18]–[20], [22],
[26], [36]–[47], [49]. The architectures of these models are
ResNets [53] and Wide ResNets (WRN) [54]. In Table I, we
exhibit our model collection: For each case (row), the clas-
sifier is matched with the respective paper/work, architecture,
ModelID from RobustBench ModelZoo and the accuracy that
the classifier attains on the respective clean evaluation set. In
the case of CIFAR-10 and CIFAR-100, this coincides with
the 10,000 images of the standard test set, whereas in the
ImageNet case, 5,000 images from the val set are picked,
accordingly to the established split of RobustBench library.
We also state that in the following discussion, we’ll refer to
the terms Attack Success Rate (ASR) and Robust Accuracy
(equal to 1−ASR) interchangeably to quantify the strength of
each attack.

C. Experimental Analysis

1) Multi-Stage PGD versus Single-Loss: First, we compare
the loss alternation strategy against the typical single loss
variants of PGD. In this experimental setting, step size is

https://github.com/RobustBench/robustbench


K=1 K=2 K=3

Model ID PGDCE PGDCW PGDDLR PGDCE&CW PGDCE&DLR PGDCW&DLR PGDCE&CW&DLR
C

IF
A

R
-1

0

Engstrom2019Robustness [26] 52.24 52.59 53.55 50.29 -1.95 50.22 -2.02 52.63 +0.04 50.27 -1.97
Carmon2019Unlabeled [22] 62.09 60.86 61.16 60.00 -0.86 60.00 -1.16 60.88 +0.02 59.97 -0.89

Hendrycks2019Using [36] 57.38 56.61 57.47 55.41 -1.20 55.37 -2.01 56.55 -0.06 55.35 -1.26
Zhang2019You [37] 46.28 47.44 47.97 45.33 -0.95 45.32 -0.96 47.42 -0.02 45.32 -0.96

Zhang2019Theoretically [20] † 55.47 54.21 54.39 53.45 -0.76 53.43 -0.96 54.23 +0.02 53.41 -0.80
Wu2020Adversarial [38] 59.05 56.93 57.02 56.47 -0.46 56.44 -0.58 56.94 +0.01 56.42 -0.51

Sehwag2021Proxy R18 [39] 58.68 57.22 57.89 56.06 -1.16 56.05 -1.84 57.21 -0.01 56.06 -1.16
Andriushchenko2020Understanding [19] 47.14 46.62 47.62 44.56 -2.06 44.53 -2.61 46.62 0 44.50 -2.12

Dai2021Parameterizing [40] 63.98 63.23 63.83 61.80 -1.43 61.76 -2.07 63.23 0 61.77 -1.46
Gowal2021Improving 28 10 ddpm 100m [41] 65.79 65.20 65.76 63.86 -1.34 63.85 -1.91 65.20 0 63.84 -1.36

Huang2021Exploring ema [42] 64.95 64.15 64.64 63.09 -1.06 63.03 -1.61 64.12 -0.03 63.06 -1.09
Zhang2020Geometry [43] 66.67 60.40 60.59 59.78 -0.62 59.69 -0.90 60.37 -0.03 59.69 -0.71

Rade2021Helper R18 extra [44] 61.48 58.51 58.56 57.77 -0.74 57.74 -0.82 58.51 0 57.74 -0.77
Addepalli2021Towards RN18 [45] 56.00 51.88 51.97 51.45 -0.43 51.43 -0.54 51.86 -0.03 51.41 -0.47

Sehwag2020Hydra [46] 59.86 58.41 58.57 57.66 -0.75 57.61 -0.96 58.40 -0.01 57.61 -0.80

C
IF

A
R

-1
00

Rade2021Helper R18 ddpm [44] 32.60 29.66 29.69 29.12 -0.54 29.08 -0.61 29.66 0 29.12 -0.54
Rebuffi2021Fixing R18 ddpm [47] 31.82 29.20 29.25 28.68 -0.52 28.65 -0.60 29.20 0 28.68 -0.52

Addepalli2021Towards PARN18 [45] 32.90 28.10 28.23 27.68 -0.42 27.63 -0.60 28.10 0 27.67 -0.43
Rice2020Overfitting [18] 20.89 20.42 20.62 19.33 -1.09 19.33 -1.29 20.42 0 19.32 -1.10

Hendrycks2019Using [36] 33.17 30.84 32.34 29.43 -1.41 29.43 -2.91 30.83 -0.01 29.36 -1.48
Rebuffi2021Fixing 28 10 cutmix ddpm [47] 35.74 33.60 33.67 32.53 -1.07 32.50 -1.17 33.60 0 32.53 -1.07

Im
ag

eN
et Salman2020Do R18 [49] 29.50 27.32 27.60 25.64 -1.68 25.62 -1.98 27.32 0 25.66 -1.66

Salman2020Do R50 [49] 38.78 37.62 38.04 35.30 -2.32 35.26 -2.78 37.64 +0.02 35.26 -2.36
Engstrom2019Robustness [26] 32.64 32.64 33.16 30.00 -2.64 29.94 -2.70 32.66 +0.02 29.96 -2.68

Wong2020Fast [17] 27.50 27.46 27.86 25.76 -1.70 25.74 -1.72 27.48 +0.02 25.74 -1.72

TABLE II
COMPARING SINGLE-LOSS PGD WITH THE MULTI-STAGE VARIANT OF PGD (WITH K = 2, 3). PGD STARTS FROM THE CLEAN POINT (NO ADDED

NOISE). THE EXPERIMENTS ARE EXECUTED FOR T = 100 WITH NO RESTARTS. EACH ENTRY REPORTS THE ROBUST ACCURACY OF EACH CLASSIFIER
FOR THE GIVEN METHOD. (†): ATTACKED WITH ε = 0.031. THE GREEN (RED) NUMBERS INDICATE THE RELATIVE DECREASE (INCREASE) OF ROBUST

ACCURACY WITH RESPECT TO THE BEST SINGLE-LOSS ATTACK OF EACH MULTI-LOSS VARIANT.

held fixed to η(t) = ε/4 and the optimizer is set to standard
gradient with the sign operation. Our computational budget
is T = 100 with no restarts. Since no restarts are used,
we choose to initiate PGD from the clean points (no initial
perturbation) in order to eliminate any source of randomness
in the results. Table II presents the robust accuracy obtained of
PGD with different choices of surrogates, for every classifier
in our collection.

Overall, there are several noteworthy remarks: First, the
single-loss columns (K = 1) demonstrate that the sur-
rogate loss can greatly affect the ASR of PGD, confirm-
ing the findings of previous studies, as that of Croce and
Hein [1]. On average, margin loss is the most reliable
option but there are cases where it performs worse than
CE. There are instances where CE lags behind the other
two options by a large margin, e.g., as in the model from
[45] (Addepalli2021Towards_RN18), where the gap is
greater than 4%. This indicates that it is impossible to select
a priori the best possible objective for a given model. This
observation consitutes strong evidence that no surrogate loss
is reliable enough on its own.

Next, the results highlight the advantage of using multiple
losses in the same run of PGD: When combining CE with
CW or DLR (PGDCE&CW and PGDCE&DLR columns), or both
(PGDCE&CW&DLR column) the attack is always stronger (lower
rob. acc.) than the respective single-loss PGD. On average,
PGDCE&CW and PGDCE&DLR decrease robust accuracy by
1.05% and 1.39% (absolute) respectively, over their corre-

sponding single-loss variants in the CIFAR-10 case. In CIFAR-
100, the average absolute decrease in the robust accuracy
of the models is 0.81% and 1.19% for PGDCE&CW and
PGDCE&DLR. For the ImageNet dataset, the alternation strategy
provides even greater improvements, since the corresponding
average reduction reaches 2.08% and 2.29% In the case
of PGDCW&DLR, the obtained ASR is nearly identical with
PGDCW, implying that the alternation step in this case may
be futile due to the similarity between the expressions of CW
and DLR losses. Overall, our experiments illustrate that the
alternation strategy is highly beneficial, across all models and
datasets.

Finally, it is illustrated that on average PGDCE&CW&DLR
is better than PGDCE&CW and PGDCE&DLR (mainly on the
CIFAR-10 case), yet the differences are small. In some cases,
using the alternation scheme with two stages is better than
PGDCE&CW&DLR. This informs us that it is not always better
to add another stage/objective in the alternation process.
In a fixed iteration budget, adding another loss reduces the
overall time allotted to each stage. We assume that this hurts
performance because the reduced number of iterations is not
enough to reach the stagnating region of each loss.

For the remainder of the experimental section, we will focus
on the adversarial defenses of CIFAR-10 dataset.

2) Multi-Stage PGD versus AutoAttack Components:
Next, we compare our best method (on average, that is
PGDCE&CW&DLR) with every white-box component from Au-



Model ID APGDCE APGDDLR FAB PGDCE&CW&DLR ∆

Engstrom2019Robustness [26] 51.72 52.67 50.67 50.27 -0.40
Carmon2019Unlabeled [22] 61.74 60.67 60.88 59.97 -0.70

Hendrycks2019Using [36] 57.23 57.03 55.55 55.35 -0.20
Zhang2019You [37] 46.15 47.39 45.83 45.32 -0.51

Zhang2019Theoretically [20] † 55.28 53.52 53.92 53.41 -0.11
Wu2020Adversarial [38] 58.90 56.68 56.82 56.42 -0.26

Sehwag2021Proxy R18 [39] 58.38 57.37 56.27 56.06 -0.21
Andriushchenko2020Understanding [19] 46.93 47.08 44.72 44.50 -0.22

Dai2021Parameterizing [40] 63.93 63.44 62.27 61.77 -0.50
Gowal2021Improving 28 10 ddpm 100m [41] 65.63 65.14 64.14 63.84 -0.30

Huang2021Exploring ema [42] 64.55 64.14 64.45 63.06 -1.08
Zhang2020Geometry [43] 66.37 60.19 59.97 59.69 -0.28

Rade2021Helper R18 extra [44] 61.40 58.41 58.42 57.74 -0.67
Addepalli2021Towards RN18 [45] 55.80 51.56 51.93 51.41 -0.15

Sehwag2020Hydra [46] 59.60 58.29 58.29 57.61 -0.68

TABLE III
COMPARING PGDCE&CW&DLR WITH THE UNTARGETED VERSION OF EVERY SINGLE WHITE-BOX COMPONENT FROM THE AUTOATTACK ENSEMBLE.
EACH ENTRY REPORTS THE ROBUST ACCURACY OF EACH CLASSIFIER FOR THE GIVEN METHOD. ∆ COLUMN REPORT THE ROBUST ACCURACY GAP
BETWEEN PGDCE&CW&DLR AND THE BEST AMONG THE AUTOATTACK COMPONENTS. THE EXPERIMENTS ARE EXECUTED FOR T = 100 WITH NO

RESTARTS. (†): ATTACKED WITH ε = 0.031.

Model ID GAMA-PGD [13] PGDCE&CW&DLR ∆ MD Attack [11] PGDCE&CW&DLR ∆
(GAMA-PGD sch.) (MD sched.)

Engstrom2019Robustness [26] 50.05 49.88 -0.17 50.34 49.87 -0.47
Carmon2019Unlabeled [22] 59.84 59.78 -0.06 59.83 59.72 -0.11

Hendrycks2019Using [36] 55.22 55.26 +0.04 55.15 55.20 +0.05
Zhang2019You [37] 45.32 45.20 -0.12 45.49 45.17 -0.32

Zhang2019Theoretically [20]† 53.29 53.29 0 53.36 53.26 -0.10
Wu2020Adversarial [38] 56.30 56.30 0 56.28 56.26 -0.02

Sehwag2021Proxy R18 [39] 56.01 55.95 -0.06 55.92 55.89 -0.03
Andriushchenko2020Understanding [19] 44.42 44.41 -0.01 44.57 44.44 -0.13

Dai2021Parameterizing [40] 61.94 61.74 -0.20 61.99 61.72 -0.27
Gowal2021Improving 28 10 ddpm 100m [41] 63.78 63.72 -0.06 63.94 63.73 -0.21

Huang2021Exploring ema [42] 62.87 62.89 +0.02 62.93 62.86 -0.07
Zhang2020Geometry [43] 60.72 59.62 -1.10 59.73 59.58 -0.15

Rade2021Helper R18 extra [44] 57.78 57.73 -0.05 57.74 57.72 -0.02
Addepalli2021Towards RN18 [45] 51.43 51.26 -0.17 51.30 51.25 -0.05

Sehwag2020Hydra [46] 57.49 57.43 -0.06 57.31 57.45 +0.14

TABLE IV
COMPARING PGDCE&CW&DLR WITH THE STRONGEST ATTACKS OF OUR COMPUTATIONAL BUDGET (T = 100,R = 1). EACH ENTRY REPORTS THE
ROBUST ACCURACY OF EACH CLASSIFIER FOR THE GIVEN METHOD. ∆ COLUMNS REPORT THE ROBUST ACCURACY GAP BETWEEN THE COMPARED

METHODS. (†): ATTACKED WITH ε = 0.031.

Model ID GAMA-PGD [13] PGDCE&CW&DLR ∆ MD Attack [11] PGDCE&CW&DLR ∆
(GAMA-PGD sch.) (MD sched.)

Engstrom2019Robustness [26] 49.88 49.80 -0.08 50.13 49.68 -0.45
Carmon2019Unlabeled [22] 59.70 59.71 +0.01 59.67 59.67 0

Hendrycks2019Using [36] 55.21 55.09 -0.12 55.10 55.13 +0.03
Zhang2019You [37] 45.02 45.02 0 45.36 45.00 -0.36

Zhang2019Theoretically [20]† 53.26 53.20 -0.06 53.26 53.19 -0.07
Wu2020Adversarial [38] 56.29 56.23 -0.06 56.24 56.20 -0.04

Sehwag2021Proxy R18 [39] 55.89 55.85 -0.04 55.85 55.81 -0.04
Andriushchenko2020Understanding [19] 44.32 44.29 -0.03 44.42 44.36 -0.06

Dai2021Parameterizing [40] 61.95 61.70 -0.25 61.83 61.65 -0.18
Gowal2021Improving 28 10 ddpm 100m [41] 63.81 63.66 -0.15 63.90 63.65 -0.25

Huang2021Exploring ema [42] 62.77 62.74 -0.03 62.80 62.71 -0.09
Zhang2020Geometry [43] 60.28 59.44 -0.88 59.59 59.50 -0.09

Rade2021Helper R18 extra [44] 57.74 57.66 -0.08 57.71 57.67 -0.04
Addepalli2021Towards RN18 [45] 51.46 51.23 -0.23 51.22 51.21 -0.01

Sehwag2020Hydra [46] 57.37 57.31 -0.06 57.23 57.34 +0.11

TABLE V
COMPARING PGDCE&CW&DLR WITH THE SIMILAR (TO OUR WORK) BASELINES (T = 100,R = 5). EACH ENTRY REPORTS THE ROBUST ACCURACY OF

EACH CLASSIFIER FOR THE GIVEN METHOD. ∆ COLUMNS REPORT THE ROBUST ACCURACY GAP BETWEEN THE COMPARED METHODS. (†): ATTACKED
WITH ε = 0.031.
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Fig. 2. Plotting the `2-norm between successive PGD steps, for various surrogate losses. Each panel represents this quantity over iterations, for a different
classifier (ModelID is on top of each panel).

toAttack [1], i.e., APGDCE, APGDDLR and FAB attack [12].
In the original AutoAttack evaluation, the last two components
are run for T = 100 iterations and R = 9 restarts, using the
targeted version of each attack. However, we adapt these at-
tacks to our computational budget, evaluating the performance
of their untargeted versions for T = 100. In our experiments,
we execute the official code1 of AutoAttack for every single
model. We clarify that the official code does not provide a
way to turn off random initialization when evaluating the AA
components, but the fluctuations are expected to be small
enough.

As it is clearly illustrated in Table III, our proposed method,
PGDCE&CW&DLR consistently outperforms the white-box com-
ponents of AutoAttack. It becomes evident that the advantage
of using the loss switching strategy is significant, since in
this setting we run our attack for fixed step size equal to ε/4
and the simplest optimizer possible (sign operation with no
momentum). APGDCE and APGDDLR are both based in the
evidently better APGD optimizer and step size is decayed ac-
cording to some schedule, yet they lag behind PGDCE&CW&DLR
by a large margin. Particularly, PGDCE&CW&DLR achieves (on
average) 0.418% lower robust accuracy than the strongest
component.

3) Multi-Stage PGD versus the strongest baselines: We ex-
tend the assessment of our method’s effectiveness by compar-
ing it with the strongest `∞-bounded attacks on CIFAR-10, for
T = 100 and no restarts. We consider the two best baselines
found in literature (in our computational budget): GAMA-
PGD [13] and MD attack [11]. Both of these methods suggest
improving PGD through modifications on the surrogate loss
and step size schedule. In Subsection VI-A, we delve into
the exact similarities between the examined methods and our
work.

We execute these attacks through the official codebases2

3. When comparing PGDCE&CW&DLR with each baseline, we
adapt the learning rate schedule according to each work

1https://github.com/fra31/auto-attack
2https://github.com/val-iisc/GAMA-GAT
3https://github.com/Jack-lx-jiang/MD attacks

(See Appendix for details). The results of these compar-
isons are summarized in Table IV. In the parentheses of
PGDCE&CW&DLR columns, we display which learning rate
schedule is used. These results indicate the effectiveness
of our attack, achieving state-of-the-art performance (in the
T = 100, R = 1 budget), for the majority of evaluated models.

Specifically, PGDCE&CW&DLR outperforms GAMA-PGD
[13] in 11 out of 15 `∞-bounded robust models, whereas
in 2 models they achieve the exact same ASR. In the 2
networks that PGDCE&CW&DLR returns higher robust accuracy,
the differences are quite small, i.e., 0.02% and 0.04%. An
extreme case is the model of [43], since GAMA-PGD lags
behind our method for 1.10%. These observations indicate
that, in general, PGDCE&CW&DLR suffers less from robustness
overestimation.

In the case of MD attack [11], our method achieves lower
robust accuracy in 13 out of 15 tested models, with an average
improvement of 0.15%. In two models [36], [46], however,
the estimated robust accuracy is 0.05% and 0.14% higher
than that of MD attack. Overall, this comparison, similarly
to the previous one, highlights that PGDCE&CW&DLR provides
the most reliable `∞-bounded robustness evaluations.

Since the differences of our best method with these base-
lines are marginal for some cases, it is crucial to answer
whether they arise just because our method is benefited from
the specific PGD starting point (which in our case is the clean
image). To address this, we repeat the above comparisons for
the same amount of iterations but with R = 5 restarts. In
this case, the starting points are initialized with random noise
δ = ε ·sgn(u), where u ∼ U(−1, 1). The results are illustrated
in Table V. Overall, it is evident that the increased number
of restarts helps each attack to achieve slightly lower robust
accuracy, but comparatively, our attack still performs more
reliable robustness evaluations for the vast majority of cases.

D. Qualitative Analysis

Here, we conduct a qualitative analysis to better grasp the
impact of changing surrogate losses during optimization. Our
experiments are inspired by the work of Yamamura et al.
[33], where they visualize the `2-distance between successive



Model ID PGDCE&CW PGDCW&CE PGDCE&DLR PGDDLR&CE PGDCW&DLR PGDDLR&CW

Engstrom2019Robustness [26] 50.29 50.95 50.22 51.13 52.63 52.97
Carmon2019Unlabeled [22] 60.00 60.27 60.00 60.39 60.88 60.94

Hendrycks2019Using [36] 55.41 55.62 55.37 55.72 56.55 56.84
Zhang2019You [37] 45.33 45.85 45.32 45.86 47.42 47.58

Zhang2019Theoretically [20] 53.45 53.76 53.43 53.86 54.23 54.31
Wu2020Adversarial [38] 56.47 56.68 56.44 56.72 56.94 56.98

Sehwag2021Proxy R18 [39] 56.06 56.42 56.05 56.52 57.21 57.49
Andriushchenko2020Understanding [19] 44.56 44.94 44.53 45.03 46.62 46.77

Dai2021Parameterizing [40] 61.80 62.18 61.76 62.33 63.23 63.42
Gowal2021Improving 28 10 ddpm 100m [41] 63.86 64.80 63.85 64.30 65.20 65.31

Huang2021Exploring ema [42] 63.09 63.52 63.03 63.64 64.12 64.34
Zhang2020Geometry [43] 59.78 60.16 59.69 60.31 60.37 60.51

Rade2021Helper R18 extra [44] 57.77 58.17 57.74 58.18 58.51 58.54
Addepalli2021Towards RN18 [45] 51.45 51.79 51.43 51.84 51.86 51.93

Sehwag2020Hydra [46] 57.66 57.92 57.61 57.93 58.40 58.47

TABLE VI
ABLATION STUDY. EXPLORING THE IMPORTANCE OF THE SURROGATES’ ORDER. THE EXPERIMENTS ARE EXECUTED FOR T = 100 WITH NO RESTARTS.

EACH ENTRY REPORTS THE ROBUST ACCURACY OF EACH CLASSIFIER FOR THE GIVEN METHOD. (†): ATTACKED WITH ε = 0.031.

Convex
Model ID PGD100

CE PGD100
CW PGD50

CE ∨ PGD50
CW γ = 0.25 γ = 0.75 PGDCE&CW

Engstrom2019Robustness [26] 52.24 52.59 50.75 51.59 52.30 50.29
Carmon2019Unlabeled [22] 62.09 60.86 60.18 60.97 60.85 60.00

Hendrycks2019Using [36] 57.38 56.61 55.52 56.10 56.36 55.41
Zhang2019You [37] 46.28 47.44 45.56 46.37 47.19 45.33

Zhang2019Theoretically [20] † 55.47 54.21 53.68 54.34 54.18 53.45
Wu2020Adversarial [38] 59.05 56.93 56.66 57.46 57.00 56.47

Sehwag2021Proxy R18 [39] 58.68 57.22 56.37 57.22 57.10 56.06
Andriushchenko2020Understanding [19] 47.14 46.62 44.81 45.78 46.17 44.56

Dai2021Parameterizing [40] 63.98 63.23 62.17 62.89 63.15 61.80
Gowal2021Improving 28 10 ddpm 100m [41] 65.79 65.20 64.20 64.72 65.00 63.86

Huang2021Exploring ema [42] 64.95 64.15 63.35 64.01 64.09 63.09
Zhang2020Geometry [43] 66.67 60.40 60.14 63.88 60.86 59.78

Rade2021Helper R18 extra [44] 61.48 58.51 58.14 59.14 58.49 57.77
Addepalli2021Towards RN18 [45] 56.00 51.88 51.78 53.23 51.96 51.45

Sehwag2020Hydra [46] 59.86 58.41 57.85 58.59 58.41 57.66

TABLE VII
ABLATION STUDY. IN THE CONVEX COLUMNS, γ (1− γ) CORRESPONDS TO CE (CW). THE EXPERIMENTS ARE EXECUTED FOR T = 100 WITH NO

RESTARTS. EACH ENTRY REPORTS THE ROBUST ACCURACY OF EACH CLASSIFIER FOR THE GIVEN METHOD. (†): ATTACKED WITH ε = 0.031.

PGD steps: ‖x(k+1) − x(k)‖2 in order to empirically show
that their proposed optimizer explores the input space more
extensively. In a similar vein, we replicate their method
for PGDCE,PGDCW,PGDCE&CW,PGDCE&CW&DLR in Figure 2,
inspecting three different classifiers. To generate smoother
curves, the y-axis quantity is averaged on a batch of 100
examples.

Altogether, it appears that in the single loss variants, the
search of PGD becomes quite localized and after some time the
successive steps are within small distances. In the cases where
multiple surrogates are used, the curve presents a sudden
rise in the alternation timestep, indicating that the objective
alternation helps the algorithm to diversify its search.

E. Ablation: Surrogate Loss Order in Multi-Stage PGD

A research question regarding the multi-stage variant of
PGD is whether the objective ordering affects the results.
Specifically, we are interested in understanding whether any
change occurs if we optimize the objectives with reverse
ordering. To address this question, we execute the two-stage

PGD, with T = 100 and no restarts, for every possible pair
(order matters) of CE, CW and DLR.

The results of Table VI demonstrate that the order plays
an essential role. Particularly, it is clearly illustrated that it
is better to start the optimization procedure with the CE loss,
then finishing off with CW or DLR. However, we observe that
regardless of the objective ordering, every multi-stage PGD
variant which alternates between CE and one of CW, DLR
(PGDCE&CW, PGDCW&CE, PGDCE&DLR, PGDDLR&CE columns)
performs better than single-loss PGD.

F. Ablation: Additional Techniques of Combining Surrogates

Another interesting research question is to explore whether
there exist other ways of combining surrogates. To settle
this, we compare the alternation method with two additional
combining techniques. First, one can combine different surro-
gates through a convex combination, i.e., setting the surrogate
according to the following expression:

L(x, y) = γ · L1(x, y) + (1− γ) · L2(x, y)



Another way is to combine different surrogates in an
ensemble-like manner, i.e., split the entire iteration budget
into K equally sized intervals, execute PGD using the k-th
surrogate Lk, starting from the clean point (not from where
the previous stage ended), and then aggregate the output deci-
sions. This method is inspired by the MultiTargeted surrogate,
introduced by Gowal et al. [30]. For the CE and CW losses,
we denote the latter combining strategy as PGDCE ∨ PGDCW,
because the output decisions of each surrogate are aggregated
through binary OR, i.e., the input is deemed misclassified
if at least one of PGDCE, PGDCW generate a successful
perturbation.

We conduct an ablation study, using the CE and CW objec-
tives, to explore the effectiveness of these methods. The results
are illustrated in Table VII, where we also report the robust
accuracy of PGDCE,PGDCW,PGDCE&CW for direct compari-
son (we also include the iteration budget on the superscript to
draw a distinction with the ensemble method). As expected,
the robust accuracy of convex combination is susceptible to the
choice of γ, with its performance depending on whether the
best-performing objective has a larger weight. The ensemble
method, on the other hand, consistently outperforms the single-
loss PGD, and much like PGDCE&CW, is more “robust” against
issues arising from individual use of objectives. However,
the loss alternation strategy, PGDCE&CW, performs better than
the ensemble-like combination. We advocate that this occurs
because PGDCE&CW utilizes the progress made in previous
stages to perform better initialization for the next stage.
The ensemble-like method, however, discards the perturbation
found by previous objectives, and starts optimization all over
again.

VI. DISCUSSION

A. Similarity with Previous Works

Next, we discuss previous works that also employ a loss
alternating strategy. First, the most similar work is that of Ma
et al. [11], where they employ an identical alternation step to
evade the issue of imbalanced gradients. The first PGD stage
optimize only one of the two logit terms, whereas in the final
stage, the typical margin loss is optimized. Notice a striking
difference: Our work involves the CE,CW and DLR losses,
all containing more than one logit terms, hence potentially
suffering from gradient imbalance that should translate to
reduced ASR. Our method outperforms MD attack. Therefore,
our study implies that the performance improvement of MD
attack [11] may be the outcome of switching surrogates, rather
than deterring the magnitudes of logit terms’ gradients from
becoming highly disparate.

The second method is GAMA-PGD, introduced by Srira-
manan et al. [13]. The authors propose to regularize the margin
loss with a MSE term, weighted by a decaying coefficient. In
their implementation, the initial rate of weights between the
MSE and CW losses is 50:1, hence for the first few iterations
the contribution of CW loss is negligible. The weight of MSE
is linearly decayed to 0 for T/4 iterations, and after that point
the surrogate is set to the standard margin loss. Essentially,

their attack alternates the surrogate loss used by PGD as
many times as the duration of the interval during which MSE
decays, i.e., T/4 out of T iterations. Their analysis conveys
the intuition that the improvement originates solely from the
regularizing effect that MSE exerts on the margin loss. Our
work demonstrates that the benefits of GAMA-PGD may
arise from the loss alternation, still further experimentation
is required.

Another method loosely connected with ours is the Com-
posite Adversarial Attack (CAA) [55]. Mao et al. propose to
generate adversaries by searching for the best composition of
individual base attacks. Our method can be seen as a more
special study of CAA, since it composes PGD attacks for two
(or three) different objectives. Our work indicates much more
markedly the value of using multiple losses. The effectiveness
of CAA appears more like the result of a brute-force-like
search.

Overall, our paper differs from the aforementioned works
in that it manages to showcase the true efficacy of the alter-
nation step, stripped down from other redundant components.
The experiments provide direct evidence that using multiple
objectives is sufficient to induce large performance gains.
Additionally, our work is an extension of these methods since
we evaluate the combination of all possible pairs of CE,CW
and DLR losses, rather than using only CW with its individual
terms [11] or CW and MSE [13].

B. Future Work

There are several questions arising from the proposed work
than require further investigation and could be of value to the
community. Notably, it is critical to address whether there is
a trade-off between the number of surrogates used and PGD
performance, for a fixed number of iterations. We assumed that
adding more stages for fixed budget may hinder performance
due to the decreased duration allotted to each stage. However,
our intuition is that adding more objectives shouldn’t drop the
Attack Success Rate (ASR), given that PGD spends a sufficient
time in each stage. This can be easily verified by increasing the
computational budget and observing wether the larger amount
of surrogates leads to higher ASR.

Another interesting observation to explore is how the
alternation step depends on the choice of objectives and
their respective formulations. Particularly, we observed that
PGDCW&DLR performs at a par (or even worse) than the re-
spective single-loss variants, PGDCW and PGDDLR, which was
credited to the similarity of CW and DLR. This indicates that
the loss alternation technique is an improvement only if the
expressions generate landscapes which are diverse enough. In
this vein, it would be valuable to encompass other expressions
which deviate from the objective functions of our study, i.e.,
CE, CW and DLR.

Since we experimentally demonstrate that our PGD variant
is the strongest adversarial attack in the computational budget
of 100 iterations, another direct extension is to integrate our
attack into powerful ensembles. Specifically, in the case of Au-
toAttack [1], PGDCE&CW&DLR is outperforming every white-



box component (Table III), hence we assume that replacing
e.g. APGDDLR with PGDCE&CW&DLR would produce more
reliable robustness evaluations.

Apart from that, it is worthwhile to investigate whether
the idea of increasing the number of surrogates helps other
algorithms to perform better. Notice that our work is entirely
framed within the PGD algorithm, but other popular attacks
remain unexplored. Subsequent works could address whether
our findings extrapolate to other attacks, and even in other
settings e.g. black-box attacks.

VII. CONCLUSION

In this work, we propose a method of alternating objectives
for improving the strength of PGD-based attacks. The pro-
posed method performs better than single loss variants, across
25 adversarial defenses, spanning 3 different datasets. In the
CIFAR-10 case, it performs better than strong baselines which
are used for evaluating the `p−bounded robustness of neural
networks: AutoPGD [1], FAB [12], GAMA-PGD [13] and MD
Attack [11]. Our experiments show that alternating objectives
is a very effective way of combining different objectives com-
pared, e.g., to convex combination and ensemble-like methods.
It is also experimentally shown that the proposed method
offers significant robustness towards overcoming loss-specific
weaknesses. Furthermore, our qualitative analysis offers intu-
ition on the reasons behind our method’s strength that may be
related to the algorithm’s search space diversification induced
by the alternation step. Finally, we offer a new perspective on
how the success of other state-of-the-art attacks, i.e., GAMA-
PGD and MD Attack, can be ascribed to loss alternation.
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APPENDIX

A. Implementation Details

For our experiments, we implement code on the Py-
Torch framework. The PGD implementation is based on the
TRADES [20] repository4. All attacks are executed with a `∞-
norm bound of ε = 8/255 and for T = 100 iterations, with
no restarts. Our code returns the best intermediate PGD point
instead of the last. The robust models of our study are obtained
from the ModelZoo of RobustBench [52]. Our experiments
are run in a NVIDIA GeForce GTX 1080 Ti GPU with 12GB
VRAM.

B. Step Size Schedules

Here, we discuss the step size schedules used when com-
paring our method with the GAMA-PGD [13] and MD Attack
[11] baselines. In GAMA-PGD, the step size schedule incurs
tenfold drops at T = 60 and T = 85, starting from η(0) = 2ε.

In [11], step size is regulated according to a cosine-
annealing scheme. In particular, the step size in t−th iteration
equals:

η(t) =

{
ε · (1 + cos( t−1T ′ )π) , t < T ′

ε · (1 + cos( t−T
′

T−T ′π)) , T ′ ≤ t < T

where T = 100, T ′ = T/2. Therefore, step size is decayed
from 2ε to 0 in each stage. We extend this scheme to our
three-stage variant as follows:

η(t) =





ε · (1 + cos( t−1T/3 )π) , t < T/3

ε · (1 + cos( t−T/3T/3 π)) , T/3 ≤ t < 2T/3

ε · (1 + cos( t−2T/3T/3 π)) , 2T/3 ≤ t < T

4https://github.com/yaodongyu/TRADES
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