2207.00828v1 [cs.CL] 2 Jul 2022

arxXiv

A Multi-Task BERT Model for Schema-Guided Dialogue State Tracking

Eleftherios Kapelonis', Efthymios Georgiou'?, Alexandros Potamianos*

1School of ECE, National Technical University of Athens, Athens, Greece
?Institute for Language and Speech Processing, Athena Research Center, Athens, Greece

lkapelonis@gmail.com, efthygeo@mail.ntua.gr,

Abstract

Task-oriented dialogue systems often employ a Dialogue State
Tracker (DST) to successfully complete conversations. Recent
state-of-the-art DST implementations rely on schemata of di-
verse services to improve model robustness and handle zero-
shot generalization to new domains [1]], however such methods
[2113]] typically require multiple large scale transformer models
and long input sequences to perform well. We propose a sin-
gle multi-task BERT-based model that jointly solves the three
DST tasks of intent prediction, requested slot prediction and
slot filling. Moreover, we propose an efficient and parsimo-
nious encoding of the dialogue history and service schemata
that is shown to further improve performance. Evaluation on
the SGD dataset shows that our approach outperforms the base-
line SGP-DST by a large margin and performs well compared
to the state-of-the-art, while being significantly more computa-
tionally efficient. Extensive ablation studies are performed to
examine the contributing factors to the success of our model.
Index Terms: dialogue state tracking, schema-guided, task-
oriented dialogue, zero-shot learning

1. Introduction

Task-oriented dialogue is an important and active research area
that has attracted a lot of attention in both academia and in-
dustry. The aim of task-oriented dialogue systems is to assist
users in accomplishing daily activities like reserving a restau-
rant, booking tickets etc. An important component of a task-
oriented dialogue system is the Dialogue State Tracker (DST)
which tracks the user goal over multiple turns of dialogue.
Based on a spoken utterance and the dialogue history, the DST
predicts the dialogue state which represents the user goal. The
predicted dialogue state is then used by other components to re-
trieve elements from a database, perform the actions requested
by the user and respond accordingly [4].

Both single-domain [} 16} [7} 18] and multi-domain [9} |10}
111, 12} [13]] approaches have been used for DST training. The
main DST’s tasks are to predict the active user intent (intent
prediction), the slots that are requested by the user (requested
slot prediction) and the values for slots given by the user un-
til the turn (slot filling) [14]. Early neural methods use slot-
dependent architectures [[15, [16], training different parameters
for every slot. In order to improve scalability and performance,
slot-independent methods were proposed [17, [18]] which share
parameters between all slots.

Motivated by the ever-increasing number of diverse ser-
vices used by commercial task-oriented systems, the schema-
guided paradigm was developed [1]]. Services or dialogue do-
mains are defined by their corresponding schema, a structured
ontology, which is usually a set of the supported intents and
slots. Schema-guided approaches [1} [10, [19] often include a
natural language description of the schema elements, e.g., in

Find me an apartment

In which area to look?

potam@central.ntua.gr

Search in Fremont
How many bedrooms?
3 bed rooms >

Homes_1:

active_intent: FindAppartment
requested_slots: []
slot_values: {area=Fremont,
number_of_beds=3}

Alborada Apartments has 3 bed rooms
and 2 baths, is located at 1001
Beethoven Common and costs $3900

Should i schedule a visit to it?

Yes, please do
[-]

Find me a restaurant there]

In Fremont there is the World Gourmet

Book me a table there for 4 people
at six in the evening on that day

Restaurants_2:

active_intent: ReserveRestaurant
requested_slots: []

slot_values: {category=unlimited,
date=March 5th, location=Fremont,
number_of_seats=4,
restaurant_name=World Gourmet,
time=six in the evening}

Please confirm: Booking a table for 4 people at 6
pm on March 5th at the World Gourmet Fremont

Restaurants_2:
active_intent: ...
requested_slots:

Yes, thats fine. Is there vegetarian [has_vegetarian_options, rating]
food, whats the rating? slot_values: ...

Figure 1: At every user turn the dialogue state is calculated for
each involved service. The last two utterances are not always
enough especially for the slot filling task. In such cases slot val-
ues can be found either in previous dialogue states or previous
system actions.

the SGD dataset the schema for the service Restaurants_1 has
a slot with name “party_size” and description “Party size for a
reservation”. An important goal of schema-based approaches
is scalability and generalization, i.e., to build systems that are
capable of handling completely new domains and services.

Pre-trained transformer models (e.g. BERT [20], XLNet
[21]], GPT-2 [22], T5 [23] etc.) are the most popular solution
for schema-based DST modeling. The importance of encod-
ing the dialogue and schema together is highlighted in [24].
State-of-the-art methods use classification [2]] or sequence-to-
sequence pre-trained transformer models [25, 26| 27]. The en-
tire dialogue is passed to the model multiple times with every
possible schema element description (multi-pass approach). In
[3], the authors concatenate all of the schema element descrip-
tions with the dialogue (single-pass approach) slightly improv-
ing computational efficiency, yet still using the entire dialogue
history. Other methods ([28} |29]]) aim to address this issue by
only encoding the last two utterances. To retrieve slot values
found in earlier utterances, slot carryover mechanisms and a
multi-pass approach were employed. Note that methods that
encode the entire dialogue history, e.g., [2} 3], often perform
better than methods that only encode the last two utterances.

In this paper, we propose a single multi-task BERT-based
model that jointly performs intent prediction, requested slot pre-
diction and slot filling. In the proposed model, we adopt slot
carryover mechanisms and encode only the preceding system

Active intent: ReserveRestaurant Requested slots: []

e e

number_of_seats: 4
time: six in the evening

restaurant_name: World Gourmet
date: March 5th
e e

4 Rl 4 Rl 4

N 4

[intent status] [intent value | [regstatus] [user status

[start] end | [categorical | [carryover status] [cross-service]

£t 244 +4

3 4+ 44

BERT

Part 1 | |[CLS] || [SERVICE] restaurants 2 [ACTION] Offer [SLOT] restaurant name [VALUE] World Gourmet [ACTION] Offer [SLOT] location [VALUE] Fremont |/ [SEP]

Part 2 | | Book me a table there for 4 people at six in the evening on that day | [SEP]

Part 3 | | [SERVICE] restaurants 2 || Active intent : find restaurants l[INTENT] reserve restaurant l[INTENT] find restaurants I[INTEN'I'] [NONE]‘

[Part 4] [SLOT] restaurant name : [NONE]||[SLOT] date : [NONE] | [SLOT] time : [NONE] 4..|[SLOT] number of seats : [NONEﬂ‘[VALUE] 1 ‘[VALUE] 2‘ [SLOT] rating |...

Part 5 | |[SERVICE] homes 1 |[SLOTJ visit date : March 5thH[SLOT] system address : 1001 Beethoven Common | ...|[SEP]

Figure 2: The inputs to the intent prediction, requested slot prediction, slot filling and slot carryover heads are shown for our proposed
multi-task BERT model (top), along with an example encoding of the utterance and dialogue history that is the input to the base BERT
model (bottom). Note the color coding of the input to the classification heads (top) that matches the various parts of the input sequence
(bottom). For this example, the service in the system and the user utterance is Restaurants_2. The previous intent FindRestaurants
changes to ReserveRestaurant. No slots are requested by the user. In the preceding system utterance, the system offers the value
“World Gourmet” for the slot restaurant_name which the user accepts (slot carryover in_sys_uttr). The user gives the values “six in
the evening” and “4” for the non-categorical slot time and the categorical slot number_of_seats. The date value is not uttered but it is
implied that it has been mentioned before (slot carryover in_cross_service_hist from a previous service (Homes_1)). Part of the input is

truncated for illustration purposes.

utterance and the current user utterance. Furthermore, the pre-
ceding system utterance is abstracted and represented as its un-
derlying system actions. To achieve a more efficient and par-
simonious input representation, we encode all of the schema
elements together using only their names and we selectively in-
clude past dialogue states. Our proposed model significantly
outperforms the baseline SGP-DST system and achieves near
state-of-the-art performance. Extensive ablation studies reveal
the impact of each strategy of our model on the slot filling task.
Our key contributions are: 1) we propose a novel multi-task
BERT-based model with slot carryover mechanisms, 2) we con-
struct an efficient and parsimonious abstracted representation of
the dialogue and schema that is shown to significantly improve
performance while achieving greater computational efficiency.
Our code is available as open-source

2. Method

The multi-task model architecture is shown in Fig. |Zl The user
utterance, previous system utterance, schema(ta) and past DST
information (see Part 1 to 5) are encoded via BERT. Different
pieces of the encoded sequence (see matching color coding in
figure) are given as input to nine classification heads that per-
form the tasks of intent prediction (2 heads), requested slot pre-
diction, slot filling (4 heads) and slot carryover (2 heads).

2.1. Notation

Let n be a dialogue service, I(n) the set of intents in the
service (including the special [NONE] intent) and S(n) the
set of slots in the service. Slots are divided to categorical
and non-categorical slots. Let Scqi(n) C S(n) be the set
of categorical slots and Sponcat(n) € S(n) the set of non-
categorical slots. For every categorical slot, a set of possible
values V (s),s € Scat(n) are available. Furthermore, every
slot may be informable or not depending on whether the user is
allowed to give a value for it. We denote the set of the service
informable slots as Sinf(n) C S(n).

Uhttps://github.com/lefteris 12/multitask-schema-guided-dst

Assume that at user turn ¢ of a dialogue with N services we
want to predict the dialogue state for service n. Essentially we
have to predict the active intent int(n) (intent prediction), the
requested slots req(n) C S(n) (requested slot prediction) and
the values for the slots given by the user usrSlotValue(s), s €
Sing(n) (slot filling).

For every service n’,1 < n’ < N, we denote its
previous active intent as prevInt(n’). Also, for every
slot s € S(n’) we denote the last value given by the
user for s as prevUsrSlotValue(s). Furthermore, we use
prevSysSlotValue(s) and sysUttrSlotV alue(s) to denote
the last value present in a system action, before turn ¢ — 1 and at
(system) turn ¢ — 1 respectively. For prevSysSlotValue(s)
and sysUttrSlotValue(s) we only use system actions that
contain the slot s and exactly one value for the slot. In cases
where the intent or the slot value is empty we use the [NONE]
value.

We use Sprev to denote the set of slots s € S(n'),n’ #
n that prevUsrSlotValue(s) or prevSysSlotValue(s) is
not [NONE] and prevSlotValue(s) to denote their previous
value. If prevUsrSlotValue(s) is not [NONE] we use that
value otherwise we use prevSysSlotValue(s).

For every slot we employ additional binary features
Zbin (8). The binary features used are the following: 1) whether
the service is new in the dialogue 2) whether the service
switched (it was not present in the previous dialogue state) 3)
whether exactly one value for the slot is found in the system
utterance 4) whether exactly one value for the slot is found in
previous system utterances 5) whether the slot is required in
at least one intent 6) whether the slot is optional in all intents.
Similar binary features have been used by [28].

2.2. Input representation

An example input can be seen in Fig. 2] In Part 1 we encode
the preceding system utterance as a list of actions. In Part 2 we
encode the current user utterance. In Part 3, the active service
n, the previous active intent prevInt(n) and all candidate in-
tents belonging to service n are enumerated. Part 4 contains

the list of all slots s € S(n). If s € Sins(n) we append
prevUsrSlotValue(s) and if s € Scqt(n) N Sins(n) we also
append all values in V' (s). Part 5 contains all other services
found earlier in the dialogue. For every service we enumerate
slot-value pairs from previous dialogue states or system actions,
$ € Sprev and their values prevSlotV alue(s). We prepend the
word “system” before slots given by the system to differentiate
them from slots given by the user (present in previous dialogue
states).

For the schema we only use the names for the slots and
intents instead of their full natural language descriptions used
by other works. A number of custom tokens are introduced to
the BERT vocabulary to indicate intents, slots etc.

2.3. Intent prediction task

Intent status head. We perform binary classification on the
encoded [CLS] representation to predict the intent status as
active or none.
Intent value head. For every intent ¢ € I(n) we perform bi-
nary classification on its encoded [INTENT] representation to
predict if the user switches to that intent.

If the intent status is active we choose the intent with the
highest intent value probability. Otherwise, we keep the previ-
ous intent prevInt(n).

2.4. Requested slot prediction task

Requested status head. For every slot s € S(n) we perform
binary classification on its encoded [SLOT] representation in
Part 4 to decide whether it is requested in the current user utter-
ance.

2.5. Slot filling task

User status head. For every slot s € S;,s(n) we find the
user status using its encoded [SLOT] representation in Part 4
to decide whether a value is given in the current user utterance.
The user status classes are none, active and dontcare.
Categorical head. For the categorical slots s € S;nz(n) N
Scat(n) we perform binary classification for every possible
value v € V/(s) on its encoded [VALUE] representation to
predict whether it is present in the user utterance.
Start and end heads. For the non-categorical slots s €
Sinf(n) N Snoncat(n) we find the start and end span index
distribution in the user utterance by performing classification
on the concatenation of every user utterance token with the en-
coded [SLOT] representation.

If the user status is active, the value or the span with the
highest probability is chosen for the slot. If the user status is
dontcare, the special dontcare value is assigned to the slot.

2.6. Slot carryover

The user does not always explicitly give the value for the slot
but they may instead refer to previous utterances. Therefore,
we design slot carryover mechanisms to retrieve values for slots
from the current or previous services.
Carryover status head. For every slot s € S;,r(n) we pre-
dict the carryover status using its encoded [SLOT] represen-
tation in Part 4 to find the source of the slot value. The car-
ryover status classes are none, in_sys_uttr, in_service_hist and
in_cross_service_hist.

For in_sys_uttr the slot is updated according to
the value present in the preceding system utterance
sysUttrSlotValue(s). For in_service hist the slot is

updated according to the value present in past system actions
of service n, prevSysSlotValue(s). In the above two cases,
the user accepts the value given by the system and we simply
carry that value over.

Cross-service head. For every slot s € Sprer(n) we per-
form binary classification on the concatentation of its encoded
[SLOT] representation in Part 5 with the encoded [SLOT]
representation of s in Part 4 to decide whether we should carry
the value over from slot s’ to slot s. The highest probability slot
s’ is used as the source for the value s if the predicted carryover
status is in_cross_service_hist. In this case, we assign the value
prevSlotValue(s') to slot s.

We first check the user status and if it is not none we update
the slot value according to its output. Otherwise, we also check
the carryover status. If it predicts that a carryover should take
place, we update the slot value accordingly. If both user and
carryover status are none the value remains the same as in the
previous dialogue state, prevU srSlotV alue(s).

2.7. Multi-task training

For the intent status, intent value, categorical, start, end and
cross-service classification heads we derive the class probabil-
ities with a two-layer feed-forward neural network. For the
requested status, user status and carryover status classification
heads we concatenate the slot binary features xu:r (s) after the
first layer.

We jointly optimize all classification heads, using the cross
entropy loss for each head. For the intent prediction task the loss
is L1 = w1 Lintstat + w2 Lintvai, for the requested slot predic-
tion Lo = Lyegstar and for the slot filling task Lg = w3 Lysr +
W4 Lcarry 4ws Leat +We Lstart + W7 Lend+ws Leross- Finally,
the total loss is defined as L = A1 L1 + A2 L2 4+ A3Ls.

3. Experimental Setup

Dataset. We evaluate our proposed system on the SGD dataset
[L]. SGD contains a total of 21,106 dialogues over 20 domains
and 45 services. We use the standard train/development/test
split introduced in [1]. The test set contains 1,331 single-
domain and 2,870 multi-domain dialogues and 77% of the dia-
logue turns contain at least one service not present in the train
set. We use the following metrics: Joint Goal Accuracy (JGA),
Average Goal Accuracy (Avg GA), Intent Accuracy and Re-
quested Slot F1 as defined in [1].

Label Acquisition. In order to acquire labels for the user and
carryover status, we use the user actions and search previous
turns and dialogue states to find the source for the slot. We
consider a slot as informable if and only if it is either required
or optional in at least one intent. For every turn we run the
model only for the involved services (services with at least one
change in the dialogue state in the turn) according to the ground
truth dialogue states during both training and evaluation for fair
comparison to other works. The input to the model contains
ground-truth previous dialogue states during training and during
evaluation the previously predicted ones are used.

Training Setup. We use the huggingface [|implementation of
the BERT uncased models. For all our experiments we use a
batch size of 16 and a dropout rate of 0.3 for the classification
heads. We use the AdamW optimizer [30] with a linear warmup
of 10% of the training steps and learning rate 2e-5. We train for
a total of about 55k steps and evaluate on the development set

Zhttps://huggingface.co/docs/transformers/model_doc/bert

Table 1: Comparison to other works

System Model Params JGA Intent Acc Req Slot F1
SGD-baseline [1] BERTEBAsE 110M 254 90.6 96.5
SGP-DST [28] 6 x BERTgAsE 660M 72.2 91.9 99.0
paDST [2] 3 x RoBERTagase+ XLNetLarGE 715M 86.5 94.8 98.5
D3ST [3] (Base) T5gask 220M 72.9 97.2 98.9
D3ST [3] (Large) T5LARGE 770M 80.0 97.1 99.1
D3ST [3] (XXL) T5xxL 11B 86.4 98.8 99.4
Ours (median result) BERTgAsE 110M 82.7 94.6 99.4
Ours (avg 3 runs) BERTgAsE 110M 825+1.0 947+05 994 + 0.1
Table 2: Ablation study handcrafted features, special rules and dialogue augmentation
through back-translation (paDST). Overall, the proposed ap-
System JGA AvgGA proach achieves near state-of-the-art performance despite using
Ours 82.7 95.2 a much smaller model size and a shorter input representation.
w/o system actions 71.9 91.6 . .
w. slot descriptions 783 041 Ablation study. We perform an ablation study (Tgble R) to
w/o previous state 79.8 94.0 show the contribution of each of the proposed strategies on the
w/o schema augm. 80.5 94.9 slot filling task. Replacing the system utterance with a set of
w/o schema augm. & word dropout 78.1 94.3 system actions (w/o system actions) has the biggest effect on
w/o binary features 81.0 94.4 SY§ (KA) has £8¢

Table 3: Effect of carryover mechanisms

System JGA AvgGA
Ours 82.7 95.2
w/0 in_sys_uttr 62.8 87.0
w/o in_service_hist 76.4 92.7
w/o in_cross_service_hist 66.8 84.4
SGD-baseline [1] 25.4 56.0
w/o in_service_hist & in_cross_service_hist 61.6 81.9
w/o all 36.5 68.5

every 4k steps. We choose the model that performs best based
on the JGA metric on the development set.

Preprocessing and augmentation. We preprocess the schema
elements and the system actions by removing underscores and
splitting the words when on CamelCase and snake_case style.
We randomly (p = 0.1) replace the input tokens in the user ut-
terance with the [UNK] token (word dropout) and shuffle the
order of the schema elements in Parts 3-5 during training as
proposed by [31]. We also apply random (p = 0.1) data aug-
mentation through synonym replacement and random swap to
the intents, slots and values in Parts 3-4 (schema augm.) via
[32].

4. Results and Discussion

Comparison to other works. In Table[T]we compare our model
to SGD-baseline, SGP-DST, paDST and three D3ST imple-
mentations of variable size. The SGD baseline [[1]] fine-tunes
BERT with the last two utterances as input and uses precom-
puted BERT embeddings for the schema. SGP-DST [28] uses
the last two utterances and slot carryover mechanisms to retrieve
values for slots which were mentioned in previous utterances.
paDST [2] and D3ST [3]] encode the entire dialogue history un-
til the current turn and calculate the dialogue state from scratch.
We report the metrics and the number of parameters in the pre-
trained model(s) fine-tuned by each method.

Our method clearly outperforms SGP-DST in all tasks
indicating that our strategies are effective. Some of the
entire-dialogue models outperform our model, especially when
they use much more parameters (D3ST XXL) or apply more

performance (see input sequence Part 1 in Fig. 2). The sys-
tem actions contain key information including the slot names
and their respective values, helping our model identify which
slots are requested, offered, confirmed etc. and predict the user
and carryover status most accurately. Performance drops when
we additionally include the slot descriptions for the informable
slots of the current service (w. slot descriptions, see Parts 3-4
of input). By removing previous intent and slot values in Parts
3-4 (w/o previous state) we observe a performance drop but also
a training speedup because of the smaller input sequence. We
also observe an improvement by performing schema augmen-
tation and word dropout possibly because these strategies help
to avoid overfitting (w/o schema augm. & word dropout). The
hand-crafted binary features can slightly benefit the system (w/o
binary features).

Effect of slot carryover mechanisms. In Table |3| we show
the effect of the various slot carryover mechanisms. For these
experiments the model is trained once and during evaluation
we replace each carryover status class with “none”. As ex-
pected, dropping “in_sys_uttr” has the biggest impact on per-
formance. “in_cross_service_hist” is also important because
of the large number of multi-domain dialogues. By remov-
ing “in_service_hist”, performance is less affected. Without
“in_service_hist” and “in_cross_service_hist” (by only consider-
ing the last two utterances) we still achieve a higher accuracy
than the SGD-baseline.

5. Conclusions

We propose a multi-task model for schema-guided dialogue
state tracking that reasons for all three critical DST tasks simul-
taneously, as well as, an efficient and parsimonious encoding
of user input, schemata and dialogue history. Close to state-of-
the-art performance is achieved, using a significantly smaller
model and input encoding. Among the various proposed en-
hancements to the model we show that abstracting the preced-
ing system utterance with system actions gives the biggest per-
formance boost. Strategies like appending previous dialogue
states, data augmentation and adding hand-crafted features fur-
ther improve performance. We believe that these strategies can
guide the design of accurate, efficient and ontology-independent
task-oriented DST capable of scaling to large multi-domain di-
alogues, important in real world applications.

[1]

[2]

[3]

[4]

[5]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

6. References

A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan, “To-
wards scalable multi-domain conversational agents: The schema-
guided dialogue dataset,” 2020.

Y. Ma, Z. Zeng, D. Zhu, X. Li, Y. Yang, X. Yao, K. Zhou, and
J. Shen, “An end-to-end dialogue state tracking system with ma-
chine reading comprehension and wide & deep classification,”
2020.

J. Zhao, R. Gupta, Y. Cao, D. Yu, M. Wang, H. Lee, A. Rastogi,
I. Shafran, and Y. Wu, “Description-driven task-oriented dialog
modeling,” 2022.

Z. Zhang, R. Takanobu, M. Huang, and X. Zhu, “Recent ad-
vances and challenges in task-oriented dialog system,” CoRR, vol.
abs/2003.07490, 2020.

J. Williams, A. Raux, D. Ramachandran, and A. Black, “The dia-
log state tracking challenge,” in Proceedings of the SIGDIAL 2013
Conference. Metz, France: Association for Computational Lin-
guistics, Aug. 2013, pp. 404-413.

M. Henderson, B. Thomson, and J. D. Williams, “The second di-
alog state tracking challenge,” in Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse and Dialogue
(SIGDIAL). Philadelphia, PA, U.S.A.: Association for Compu-
tational Linguistics, Jun. 2014, pp. 263-272.

A. Bordes and J. Weston, “Learning end-to-end goal-oriented di-
alog,” CoRR, vol. abs/1605.07683, 2016.

T. Wen, M. Gasic, N. Mrksic, L. M. Rojas-Barahona, P. Su,
S. Ultes, D. Vandyke, and S. J. Young, “A network-based
end-to-end trainable task-oriented dialogue system,” CoRR, vol.
abs/1604.04562, 2016.

P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes,
0. Ramadan, and M. Gasi¢, “Multiwoz—a large-scale multi-
domain wizard-of-oz dataset for task-oriented dialogue mod-
elling,” arXiv preprint arXiv:1810.00278, 2018.

M. Eric, R. Goel, S. Paul, A. Sethi, S. Agarwal, S. Gao, and
D. Hakkani-Tiir, “Multiwoz 2.1: Multi-domain dialogue state cor-
rections and state tracking baselines,” 2019.

X. Zang, A. Rastogi, S. Sunkara, R. Gupta, J. Zhang, and
J. Chen, “Multiwoz 2.2: A dialogue dataset with additional an-
notation corrections and state tracking baselines,” arXiv preprint
arXiv:2007.12720, 2020.

T. Han, X. Liu, R. Takanabu, Y. Lian, C. Huang, D. Wan, W. Peng,
and M. Huang, “Multiwoz 2.3: A multi-domain task-oriented
dialogue dataset enhanced with annotation corrections and co-
reference annotation,” in CCF International Conference on Nat-
ural Language Processing and Chinese Computing. — Springer,
2021, pp. 206-218.

F. Ye, J. Manotumruksa, and E. Yilmaz, “Multiwoz 2.4: A multi-
domain task-oriented dialogue dataset with essential annotation
corrections to improve state tracking evaluation,” arXiv preprint
arXiv:2104.00773, 2021.

A. Rastogi, X. Zang, S. Sunkara, R. Gupta, and P. Khaitan,
“Schema-guided dialogue state tracking task at DSTCS,” CoRR,
vol. abs/2002.01359, 2020.

M. Henderson, B. Thomson, and S. J. Young, “Word-based di-
alog state tracking with recurrent neural networks,” in SIGDIAL
Conference, 2014.

N. Mrksic, D. 0. Séaghdha, T. Wen, B. Thomson, and S. J.

Young, “Neural belief tracker: Data-driven dialogue state track-
ing,” CoRR, vol. abs/1606.03777, 2016.

A. Rastogi, D. Hakkani-Tiir, and L. P. Heck, “Scalable multi-
domain dialogue state tracking,” CoRR, vol. abs/1712.10224,
2017.

L. Ren, K. Xie, L. Chen, and K. Yu, “Towards universal dialogue
state tracking,” CoRR, vol. abs/1810.09587, 2018.

J. E. M. Mosig, S. Mehri, and T. Kober, “STAR: A schema-guided
dialog dataset for transfer learning,” CoRR, vol. abs/2010.11853,
2020.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-
training of deep bidirectional transformers for language under-
standing,” CoRR, vol. abs/1810.04805, 2018.

Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for lan-
guage understanding,” CoRR, vol. abs/1906.08237, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever, “Language models are unsupervised multitask learn-
ers,” 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” Journal of Ma-
chine Learning Research, vol. 21, no. 140, pp. 1-67, 2020.

J. Cao and Y. Zhang, “A comparative study on schema-guided di-
alogue state tracking,” in Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Online: Associa-
tion for Computational Linguistics, Jun. 2021, pp. 782-796.

C. Lee, H. Cheng, and M. Ostendorf, “Dialogue state tracking
with a language model using schema-driven prompting,” CoRR,
vol. abs/2109.07506, 2021.

J. Zhao, M. Mahdieh, Y. Zhang, Y. Cao, and Y. Wu, “Effective
sequence-to-sequence dialogue state tracking,” in Proceedings of
the 2021 Conference on Empirical Methods in Natural Language
Processing. Online and Punta Cana, Dominican Republic: Asso-
ciation for Computational Linguistics, Nov. 2021, pp. 7486-7493.

Z. Lin, B. Liu, S. Moon, P. A. Crook, Z. Zhou, Z. Wang, Z. Yu,
A. Madotto, E. Cho, and R. Subba, “Leveraging slot descriptions
for zero-shot cross-domain dialogue state tracking,” CoRR, vol.
abs/2105.04222, 2021.

Y.-P. Ruan, Z.-H. Ling, J.-C. Gu, and Q. Liu, “Fine-tuning bert for
schema-guided zero-shot dialogue state tracking,” 2020.

M. Li, H. Xiong, and Y. Cao, “The SPPD system for
schema guided dialogue state tracking challenge,” CoRR, vol.
abs/2006.09035, 2020.

I. Loshchilov and F. Hutter, “Fixing weight decay regularization
in adam,” CoRR, vol. abs/1711.05101, 2017.

S. Kim, S. Yang, G. Kim, and S. Lee, “Efficient dialogue
state tracking by selectively overwriting memory,” CoRR, vol.
abs/1911.03906, 2019.

J. Wei and K. Zou, “EDA: Easy data augmentation techniques for
boosting performance on text classification tasks,” in Proceedings
of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong,
China: Association for Computational Linguistics, Nov. 2019, pp.
6383-6389.

	1 Introduction
	2 Method
	2.1 Notation
	2.2 Input representation
	2.3 Intent prediction task
	2.4 Requested slot prediction task
	2.5 Slot filling task
	2.6 Slot carryover
	2.7 Multi-task training

	3 Experimental Setup
	4 Results and Discussion
	5 Conclusions
	6 References

