
End-to-end Generative Zero-shot Learning via Few-shot Learning

Georgios Chochlakis 1 Efthymios Georgiou 1 Alexandros Potamianos 1 2

Abstract

Contemporary state-of-the-art approaches to Zero-
Shot Learning (ZSL) train generative nets to syn-
thesize examples conditioned on the provided
metadata. Thereafter, classifiers are trained on
these synthetic data in a supervised manner. In
this work, we introduce Z2FSL, an end-to-end
generative ZSL framework that uses such an ap-
proach as a backbone and feeds its synthesized
output to a Few-Shot Learning (FSL) algorithm.
The two modules are trained jointly. Z2FSL
solves the ZSL problem with a FSL algorithm,
reducing, in effect, ZSL to FSL. A wide class of
algorithms can be integrated within our frame-
work. Our experimental results show consistent
improvement over several baselines. The pro-
posed method, evaluated across standard bench-
marks, shows state-of-the-art or competitive per-
formance in ZSL and Generalized ZSL tasks.

1. Introduction
Deep Learning has seen great success in various settings and
disciplines, like Computer Vision (Krizhevsky et al., 2012;
Zhou et al., 2017; Chen et al., 2019), Speech and Language
Processing (Devlin et al., 2019; Brown et al., 2020), Com-
puter Graphics (Starke et al., 2019; Park et al., 2019) and
Medical Science (Ronneberger et al., 2015; Rajpurkar et al.,
2017). Despite the variety of applications, there is a com-
mon denominator: resources. The overwhelming majority
of applications not only benefit from but necessitate volu-
minous data along with the associated hardware resources
to achieve their reported results. This is evident both from
their unprecedented, “superhuman” performance in many
narrow tasks compared to traditional algorithms (He et al.,
2015; Silver et al., 2017) and their surprising deficiencies
in low-data regimes. Consequently, resource requirements
have skyrocketed. For instance, BERT’s (Devlin et al., 2019)

1School of Electrical and Computer Engineering, National Tech-
nical University of Athens, Athens, Attica, Greece 2Behavioral
Signal Technologies, Los Angeles, CA, USA. Correspondence to:
Georgios Chochlakis <georgioschochlakis@gmail.com>.

training requirements reach 256 TPU days.

A class of problems that deal with small and medium-sized
data sets and distributions shifts are Zero-Shot Learning
(ZSL) and Few-Shot Learning (FSL). These can prove
interesting testing grounds for efficient learning. In these
problems, and particularly in ZSL for Computer Vision
tasks, Deep Learning has failed to have an immediate im-
pact. It has only been applied in indirect ways, most notably
by replacing image features extracted with traditional Com-
puter Vision algorithms, like Bag of Visual Words (Weston
et al., 2010), with features extracted by deep nets such as
ResNet (He et al., 2016). Further integration of Deep Learn-
ing techniques is important to advance these settings.

A step towards that direction has been made with the in-
clusion of generative models. For FSL, various forms of
autoencoders have been leveraged to provide additional,
synthetic examples given the actual support set (Antoniou
et al., 2017; Wang et al., 2018; Xian et al., 2019). In ZSL,
generative networks conditioned on some form of class de-
scriptions are trained so as to generate synthetic samples
of the test classes. In this way, the classification task is
transformed into a standard supervised classification task.
As a result, classifiers can be trained in a supervised manner
(Xian et al., 2018b; Zhu et al., 2018). More elaborate train-
ing techniques have been proposed (Li et al., 2019b; Xian
et al., 2019; Li et al., 2019a; Keshari et al., 2020; Narayan
et al., 2020), yet without much progress on extending the
basic approach.

In this work, we combine these two low-data regimes,
namely ZSL and FSL. Specifically, we use the generative
ZSL pipeline as a backbone and feed its synthesized out-
put to a FSL classifier. The two modules can be trained
jointly, rendering the overall process end-to-end. Formally,
the FSL classifier’s loss is combined with the prior loss of
the generative ZSL framework to form our proposed frame-
work, Z2FSL. Z2FSL conceptually reduces ZSL to FSL by
structuring the generator’s output as a support set for the
FSL algorithm. Using the same FSL classifier during both
training and testing is possible because of the flexibility of
its output label space. This property holds because the FSL
classifier can classify input patterns based on the examples
and the classes present in its support set.

Our motivation and rationale for making the process end-to-

ar
X

iv
:2

10
2.

04
37

9v
1

 [
cs

.C
V

]
 8

 F
eb

 2
02

1

End-to-end Generative ZSL via FSL

end is threefold. First, the generative net gains access to the
classification loss of the final classifier. This is beneficial
because sample generation becomes more discriminative in
a manner that explicitly helps the FSL classifier, since the
latter’s loss drives the generation. Secondly, thanks to the
aforementioned FSL property, the FSL classifier’s training
is not reliant on the generated samples of the generator, so
the former can be pre-trained on real examples. Addition-
ally, this pre-training is not restricted to the corresponding
training set of each task. For example, we can do so on
ImageNet (Deng et al., 2009). Lastly, Few-shot learners per-
form favorably compared to other alternatives in low-shot
classification tasks (Vinyals et al., 2016; Snell et al., 2017;
Wang et al., 2018).

Our contributions to the study of ZSL are:

1. The coupling of two standard research benchmarks,
ZSL and FSL, by our novel framework, Z2FSL, which
makes generative ZSL approaches end-to-end by using
a FSL classifier.

2. Formulating our framework in a manner that allows
for a wide class of ZSL and FSL algorithms to be
seamlessly integrated.

3. Achieving state-of-the-art or competitive performance
on ZSL and Generalized ZSL benchmarks and analyz-
ing the contributions of each component of our frame-
work.

We have open-sourced our code1.

2. Related Work
Earlier works address ZSL by splitting inference into two
stages, inferring the attributes – the auxiliary description
– of an image and then assigning the image to the closest
given attribute vector. Examples are DAP (Lampert et al.,
2013) and the technique presented by Al-Halah et al. (2016).
Alternatively, IAP (Lampert et al., 2013) predicts the class
posteriors and these are used to calculate the attribute pos-
teriors of any image. Word2Vec (Mikolov et al., 2013)
descriptions have also been used instead of attributes, an
example being CONSE (Norouzi et al., 2013).

More recent research concentrates on learning a linear map-
ping from the image-feature space to a semantic space.
ALE (Akata et al., 2015a) learns a compatibility function
between attributes and image features that is a bilinear form.
SJE (Akata et al., 2015b), DEVISE (Frome et al., 2013),
ESZSL (Romera-Paredes & Torr, 2015) and Qiao et al.
(2016) learn a bilinear form as a compatibility function as
well. SAE (Kodirov et al., 2017) tackles ZSL with a linear

1https://github.com/gchochla/z2fsl

autoencoder. Extending linear mappings, Xian et al. (2016)
introduced LATEM, which is a piecewise-linear compatibil-
ity function.

Other recent approaches can be categorized as prototypi-
cal, because, at least conceptually, a prototype per class is
computed. SYNC (Changpinyo et al., 2016) align graphs in
semantic and image-feature space, calculating prototypes in
the process. CVCZSL (Li et al., 2019b) learns a neural net
that maps directly from attributes to image features, to class
prototypes that is.

Currently, generative ZSL stands as the state of the art. The
inaugural works of Xian et al. (2018b); Zhu et al. (2018) laid
out the foundation, the basic generative approach, which
can be broken down into three stages: first, a generative
network is trained to generate instances of seen classes con-
ditioned on the provided class descriptions. A differentiable
classifier (e.g. pre-trained linear classifier, AC-GAN (Odena
et al., 2017)) can also be used to drive discriminative gen-
eration. In the second stage, given the description of every
test class, the generative net is used to create a synthetic
data set, transforming the problem into a supervised one.
Then, a supervised classifier (SVM, linear, etc.) is trained
on this data set. In the last stage, the classifier is tasked with
classifying the actual test samples.

This basic approach has been somewhat enriched to improve
performance. CIZSL (Elhoseiny & Elfeki, 2019) uses cre-
ative generation during training. LisGAN (Li et al., 2019a)
borrows from prototypical approaches and utilizes class rep-
resentatives to anchor generation. f-VAEGAN (Xian et al.,
2019) shares weights between the decoder of a VAE and
the generator of a WGAN to leverage the better aspects of
both. GDAN (Huang et al., 2019) uses cycle consistency.
ZSML (Verma et al., 2020) introduces meta-learning tech-
niques. OCD (Keshari et al., 2020) uses an over-complete
distribution to generate hard examples and render the syn-
thetic data set more informative. TF-VAEGAN (Narayan
et al., 2020) uses feedback to augment the f-VAEGAN.

In all cases, the proposed algorithms deviate from the basic
approach mainly in the training regime of the generative
net. In this paper, we describe Z2FSL, a generative ZSL
framework which, via FSL, allows for improvements to the
whole pipeline. In the next section, we describe in detail
how this is achieved.

3. Preliminaries
In this section, we give all the necessary definitions, intro-
duce notation and briefly discuss the necessary background.

https://github.com/gchochla/z2fsl

End-to-end Generative ZSL via FSL

3.1. Problem Definition

Let Xtr be the training samples and Xts be the test samples.
Let Ytr be the corresponding set of training labels and Yts
be the corresponding set of test labels.

In the ZSL setting, we have Ytr ∩ Yts = ∅, i.e. there are no
common classes between training and testing, leading to the
terms seen and unseen to describe the classes of the train and
test setting respectively. In the Generalized ZSL (GZSL)
setting, that restriction becomes Ytr ⊂ Yts, meaning that
there are samples from both unseen classes and every seen
class during testing. Both in ZSL and GZSL, an auxiliary
description of each class is provided to counterbalance the
absence of training examples for unseen test classes. Such a
description can be the Word2Vec representation of the class,
an attribute vector or the Wikipedia article for the class.

In a FSL setting, it is sufficient to impose the restriction
Ytr ⊂ Yts, same as GZSL. However, no descriptions are
provided. Rather, during testing, we are provided with a
set of examples per test class, named support set. A sup-
port set essentially consists of labeled examples from all
nW test classes, with nS examples each, where nW and nS
are arbitrary natural numbers referred to as way and shot
respectively. Also, let Sk denote the set of examples of
class k in a support set. Given a support set, we are tasked
with classifying a set of unlabeled samples of the same nW
classes called query set. For convenience, we consider query
sets to contain nQ samples per class, which is also an ar-
bitrary natural number. Randomly sampling a support set
and a corresponding query set from a (usually significantly)
larger test data set constitutes an episode. The purpose of an
episode is to test the ability of a model to generalize to pos-
sibly unseen classes given only a small number of examples
of each class, seen or unseen, and its classification accuracy
on the episode is naturally used as the metric of success.
It is customary to report the average accuracy over many
episodes to capture a more robust metric for a particular
data set, where the way and the shot of the episodes remain
constant. That is to say, a specific FSL setting is character-
ized by its way and shot and described as nW -way nS-shot,
e.g. 25-way 4-shot refers to the regime where the support
sets contain nW = 25 classes, with nS = 4 samples each.

3.2. Background

Wasserstein Generative Adversarial Net: Wasserstein
Generative Neural Nets (WGAN) (Arjovsky et al., 2017), an
evolution of Generative Adversarial Nets (Goodfellow et al.,
2014), are a framework to train a generator G, formulating
p(x|z) of real samples x with noise inputs z, in a minimax
fashion with another network, a discriminator D. Gulrajani
et al. (2017) added a regularization term to improve per-
formance. We present the formulation of p(x|a, z), which

includes a conditioning variable a, namely

LWGAN (G,D; pR, pZ) =

E
(x,a)∼pR,z∼pZ

[D(x, a)−D(G(a, z), a)]

− λ E
(x̂,a)∼pX̂

[
(‖∇x̂D(x̂, a)‖2 − 1)2

]
,

(1)

where pR is the distribution of the real data, pZ a “noise”
distribution, pX̂ the joint distribution of the conditioning
variable and the uniform distribution on the line between
x and G(a, z), (x, a) ∼ pR, z ∼ pZ (intuitively x̂ = ux+
(1 − u)G(a, z), u ∼ U(0, 1)) and λ is a hyperparameter.
The minimax game is defined as:

min
G

max
D
LWGAN (G,D; pR, pZ). (2)

We use generator and generative net interchangeably.

Variational Autoencoder: The Variational Autoencoder
(VAE), introduced by Kingma & Welling (2014), is an au-
toencoder that maximizes the variational lower bound of the
marginal likelihood. An autoencoder consists of an encoder
E, which compresses its input to a “latent” variable z, and
a decoder D, which reconstructs the original input of E
based on z. We present the formulation of the VAE with a
conditioning variable a,

LV AE(E,D; pR, pθ) =

− E(x,a)∼pR [x · logD(E(x, a), a)

+ (1− x) log (1−D(E(x, a), a))]

+ E(x,a)∼pR [DKL(pE(z|x, a)‖pθ(z))] ,

(3)

where DKL is the Kullback-Leibler (KL) divergence, pR
the distribution of the real data, pE the output distribution
of E, which is a Gaussian Feedforward Neural Network
(FFNN), i.e. it outputs the mean and the diagonal elements
of the covariance of a Gaussian distribution, which makes
the KL divergence analytical, and pθ is the prior distribu-
tion of the “latent” variable. For practical purposes, the
prior is set to N (. ; 0, I), and the reparameterization trick
(Bengio et al., 2013) is used to sample from the encoder as
z = µ(x, a) + ε� σ(x, a), ε ∼ N (ε; 0, I), where � is the
Hadamard product and µ, σ the encoder’s outputs.

f-VAEGAN: f-VAEGAN (Xian et al., 2019) is a genera-
tive ZSL approach that deploys both a WGAN and a VAE
to train the generator, by sharing its weights between the
VAE’s decoder and the WGAN’s generator. The overall loss
function of the approach is

LV AEGAN (G,E,D; pR, pZ , β) =

LV AE(E,G; pR, pZ)
+ β · LWGAN (G,D; pR, pZ),

(4)

where E is the encoder of the VAE, D the discriminator of
the WGAN, G the generator of the WGAN and the decoder
of the VAE and β a hyperparameter.

End-to-end Generative ZSL via FSL

Prototypical Network: Prototypical Networks (PN) (Snell
et al., 2017) present a simple, differentiable framework for
FSL. A neural network, fφ, is used to map the input sam-
ples to a metric space. The support set is mapped and the
embeddings are averaged per class so as to get a prototype
ck for each. Then, each sample in the query set is mapped
to the metric space and classified to the nearest prototype
based on the Euclidean distance d(· , ·). The formulation is

ck =
1

|Sk|
∑
xi∈Sk

fφ(xi),

pφ(y = k|x) = exp (−d(fφ(x), ck))∑
k′ exp (−d(fφ(x), ck′))

,

LPN (fφ;S,Q) =
1

|Q|
∑

(xi,yi)∈Q

log pφ(y = yi|x),

(5)

where pφ(y|x) is the softmax output distribution of x be-
longing to some class. To compute LPN , we have to sample
episodes instead of batches. In this manner, training resem-
bles testing. We refer to that manner of training as episodic.

4. Method
We now describe the proposed Z2FSL framework in detail.
In Z2FSL, a generative ZSL pipeline, used as a backbone, is
coupled with a FSL classifier. We can train the two modules
jointly by conceptually reducing ZSL to FSL, which simply
means that the backbone generates the classifier’s support
set. To get an episode, real examples of the classes that
are present in this support set can be used as the query set.
During testing, the test samples become the query and the
support is again provided by the backbone. The framework
is also presented in Figure 1, where a graphical represen-
tation of how the novel component of our framework, the
FSL classifier, affects the pipeline can be seen. The back-
bone provides the support set of the FSL classifier in all
settings. During training, this allows the back-propagation
of the FSL loss to the generator. During testing, synthesized
examples of the test classes are provided in order to enable
the classification of unseen classes.

This is possible because the FSL algorithm can classify its
input dynamically, in the sense that its output distribution
is based on the classes present in the support set. This
allows us to train the classifier on classes other than the
unseen classes and simply provide the necessary synthetic
support set during testing. Another advantage is that the
FSL algorithm can actually be pre-trained before the joint
training with the backbone and/or fine-tuned afterwards, or
even trained completely separately of the backbone.

4.1. Training

We train all the components for multiple iterations. As
an example, the components in this work, other than the

generator and the FSL classifier, which are also visible in
Figure 1, include the discriminator of a WGAN and the
encoder of a VAE. In each iteration, we take steps training
the components: training the FSL classifier, training the
generator and training all the other components as necessary.

First, when training the FSL algorithm, we randomly sam-
ple query sets from the training set and support sets are
generated by the backbone, conditioned on the metadata of
the classes that appear in the query set. The FSL loss, de-
noted LFSL, remains intact (e.g. Equation 5 for PNs). This
is a slightly modified version of the episodic training we
defined in Section 3.1, since the support set is now synthetic.
Episodes during training, nW , nS and nQ in particular, can
be set arbitrarily, similar to batches. The process can be
seen indirectly in Figure 1. For this step, we would have to
simply back-propagate LFSL only to the FSL classifier.

Second, when training the generator of the ZSL backbone,
we use the loss within the generative framework of the
backbone, which we denote as LZSL (e.g. Equation 4 if
the backbone is the f-VAEGAN). By feeding the generated
samples to the FSL algorithm, we can back-propagateLFSL
to the generator. This also requires sampling a query set
based on the classes the generator provides. The overall
objective of the ZSL generator is then described as:

LZ2FSL = LZSL + γLFSL, (6)

where γ is a hyperparameter. This is the step depicted in
Figure 1 if we take into account all arrows.

The rest of the components can be trained before or after the
two aforementioned steps. In this work, for example, we up-
date the discriminator multiple times before each generator
update, as suggested by Goodfellow et al. (2014); Arjovsky
et al. (2017).

However, components of the backbone can even be trained
along with the generator. A component that does not affect
the generation of the support set in the forward pass can be
trained along with the generator, but it remains unaffected
byLFSL. Such a component is the encoder of a VAE, which
we also use in our work, or a regressor for cycle consistency
(Huang et al., 2019). A component that affects generation
in the forward pass, such as a feedback module (Narayan
et al., 2020), can be trained along with the generator and
updated based on the objective in Equation 6 rather than
LZSL alone.

In Figure 1, we can more generally see that both real ex-
amples and corresponding descriptions are provided to the
backbone, while only real and generated examples to the
classifier. Real samples are useful to the backbone only
during training, e.g. to compute the VAE reconstruction
loss.

End-to-end Generative ZSL via FSL

Figure 1. Graphical representation of the Z2FSL framework and pipeline. We use a generative Zero-shot Learning backbone with a
Few-shot Learning classifier. During training, we train the generator G with a combination of its training within the backbone and the
Few-shot Learning classification task. During testing, the forward pass is only altered in that real examples are not provided to the
backbone and no backward pass is performed.

4.2. Evaluation

For the evaluation, the pipeline is modified in two ways.
First, as shown in Figure 1, we stop providing real samples
to the backbone. Only the descriptions are necessary so as to
generate the test support set. Second, episodes are restricted
by the test setting. The number of classes in each set, nW , is
fixed and equal to the number of test classes. nQ is equal, for
each test class, to the number of test samples available. nS
remains a hyperparameter, as we can choose the number of
samples to generate per class. In this manner, the query set
contains all test samples and the FSL classification accuracy
is exactly the final ZSL accuracy.

4.3. Assumptions

We make three assumptions about the backbone and the
classifier altogether. First, the backbone is a generative
ZSL approach. Second, the classifier is trained through a
differentiable process. Third, the classifier can classify its
input dynamically, by matching support and query classes
(Vinyals et al., 2016; Snell et al., 2017; Wang et al., 2018).
This fact allows the usage of the classifier during testing
without any training on unseen classes as long as corre-
sponding supporting examples are provided at that time.
This means that the classifier is not reliant on the generator
and, consequently, the modules can be trained separately or
jointly.

As a result, our framework is suitable for a wide class of
ZSL and FSL algorithms. We formulate our framework
as agnostic to the generative ZSL and the FSL algorithm,
and refer to a specific implementation of it by the follow-
ing macro: Z2FSL(z, f), where z is the generative ZSL
backbone and f the FSL classifier.

5. Experiments
We first present the datasets, followed by implementation
details and finally present our experimental results along
with comparison to state ot the art.

5.1. Data sets

We use the Caltech UCSD Bird 200 (CUB, Wah et al. 2011),
which consists of 11788 images of birds belonging to 200
species. One 312-dimensional attribute vector per class is
provided as well. We also use Animals with Attributes 2
(AwA2, Xian et al. 2018a). It contains 37322 images from
50 categories and 85-dimensional attributes. Our last data
set is the SUN Scene Classification (SUN, Patterson & Hays
2012) data set, with 14340 images of 717 categories and
102-dimensional attributes.

We use the provided attributes as our auxiliary descriptions,
and in particular the continuous attributes after normalizing
them w.r.t. their L2 norm. We use 10 crops per image
(original image, top-right, top-left, bottom-right, bottom-left
and their horizontally flipped counterparts) as augmentation.
We use the original image for testing. Instead of images, we
use features extracted by the ResNet-101 (He et al., 2016)
trained on ImageNet (Deng et al., 2009). We choose the
2048-dimensional output of its adaptive average pooling
layer. Additionally, we perform min-max normalization of
the features to [0, 1] and use the train-test and seen-unseen
splits proposed by Xian et al. (2018a).

5.2. Implementation Details

Since we present the results of Z2FSL(f-VAEGAN, PN) in
comparison to the state of the art, we present details for that

End-to-end Generative ZSL via FSL

Figure 2. Comparison of Z2FSL to baseline generative ZSL
backbones. Linear(z) describes the setting where the genera-
tive ZSL approach z is used with a linear classifier trained on the
generated data. We skip the second argument of the Z2FSL macro
for convenience, since it is the PN in all cases. Linear(VAEGAN)
results for CUB and SUN reported from Xian et al. (2019). The
metric presented is the average per class top-1 accuracy. Per-
formance gains denote absolute improvement compared to the
corresponding baseline.

specific architecture in this section.

We pre-train the PN in an episodic manner as suggested by
Snell et al. (2017), where support and query sets are sampled
from the real training data of the corresponding data set. The
PN is implemented as a FFNN with nh hidden layers with
square weight matrices and ReLU activations. The FSL
classifier’s learning rate is kept the same in pre-training and
the joint training with the generator.

The generator and the encoder are FFNNs with 2 hidden lay-
ers each, 4096 followed by 8192 units for the generator and
the reverse for the encoder, Leaky ReLU hidden activations
(0.2 slope), linear output for the encoder and sigmoid for the
generator. The noise dimension is chosen to be equal to the
dimension of the attributes. The discriminator is a FFNN
with one hidden layer of 4096 neurons and Leaky ReLU
hidden activations (0.2 slope). We set the coefficient of
the regularization term of WGAN λ = 10 and the training
updates of the discriminator per generator update equal to 5.

When we sample support sets from the generative net, we
set nS = 5 during training. During testing, we set it to
nS = 1800 for unseen classes. For seen classes in the
GZSL test setting, we experiment with both seen and unseen
support and select the better alternative for each benchmark.
We also consider the shot of the test support set for seen
classes a different hyperparameter mS .

Table 1. Comparison of our approach, Z2FSL(f-VAEGAN, PN),
to previous work. The metric presented is the average per class
top-1 accuracy.

ZERO-SHOT LEARNING

APPROACH CUB AWA2 SUN

CVCZSL (LI ET AL., 2019B) 54.4 71.1 62.6
F-CLSWGAN (XIAN ET AL., 2018B) 57.3 - 60.8
LISGAN (LI ET AL., 2019A) 58.8 - 61.7
F-VAEGAN (XIAN ET AL., 2019) 61.0 - 64.7
OCD (KESHARI ET AL., 2020) 60.3 71.3 63.5
TF-VAEGAN (NARAYAN ET AL., 2020) 64.9 72.2 66.0
Z2FSL(F-VAEGAN, PN) 62.5 68.0 66.5

The optimizer in all cases is Adam (Kingma & Ba, 2015)
with β1 = 0.5 and β2 = 0.999. We apply gradient clipping,
restricting the gradient for each parameter within [−5, 5].
Our implementation is in PyTorch (Paszke et al., 2019).

The tunable hyperparameters that we either search for or
vary by data set are presented in the Supplementary Mate-
rial.

5.3. Backbone Baselines

In this section, we present the performance of our framework
using various generative ZSL approaches as backbones and
compare that with the plain generative ZSL approaches, i.e.
without the FSL algorithm, as baselines. The comparison
can be seen in Figure 2. The baselines we have chosen are
a VAE, a WGAN and a f-VAEGAN. Z2FSL improves the
performance of all baselines consistently across all bench-
marks. It is interesting to see that, in most cases, the sim-
ple backbones, the VAE and the WGAN, enhanced by our
framework, exceed the performance of the more elaborate
and superior – on its own – plain f-VAEGAN.

5.4. State of the art

In this section, we present our results in comparison with
the current state-of-the-art approaches that use the same test
setting as our approach (feature extractor, dimensionality of
features, splits, etc. described in Sections 5.1 and 5.2).

5.4.1. ZERO-SHOT LEARNING

For ZSL, our experimental evaluation in Section 5.3 shows
that Z2FSL(f-VAEGAN, PN) outperforms the f-VAEGAN.
This performance compares favorably to the rest of the state-
of-the-art approaches as well, as can be seen in Table 1. In
particular, even though the TF-VAEGAN itself builds on top
of the f-VAEGAN and improves performance, our approach
outperforms that on SUN, where it achieves state-of-the-art
performance, improving the previous one by an absolute

End-to-end Generative ZSL via FSL

Table 2. Comparison of our approach, Z2FSL(f-VAEGAN, PN), to previous work. The metrics presented are: u is the average per class
top-1 accuracy of unseen classes, s is the average per class top-1 accuracy of seen class and H their harmonic mean. H is considered the
main metric of this setting.

GENERALIZED ZERO-SHOT LEARNING

CUB AWA2 SUN

APPROACH U S H U S H U S H

CVCZSL (LI ET AL., 2019B) 47.4 47.6 47.5 56.4 81.4 66.7 36.3 42.8 39.3
F-CLSWGAN (XIAN ET AL., 2018B) 43.7 57.7 49.7 - - - 42.6 36.6 39.4
LISGAN (LI ET AL., 2019A) 46.5 57.9 51.6 - - - 42.9 37.8 40.2
F-VAEGAN (XIAN ET AL., 2019) 48.4 60.1 53.6 - - - 45.1 38.0 41.3
OCD (KESHARI ET AL., 2020) 44.8 59.9 51.3 59.5 73.4 65.7 44.8 42.9 43.8
TF-VAEGAN (NARAYAN ET AL., 2020) 52.8 64.7 58.1 59.8 75.1 66.6 45.6 40.7 43.0
Z2FSL(F-VAEGAN, PN) 47.2 61.2 53.3 57.4 80.0 66.8 44.0 32.9 37.6

margin of 0.5%.

5.4.2. GENERALIZED ZERO-SHOT LEARNING

For GZSL, results can be seen in Table 2. Performance in
AwA2 is marginally better than the previous state of the
art, CVCZSL and TF-VAEGAN. In contrast, in CUB and
SUN it is harder to balance seen and unseen accuracies, as
decreasing the s metric, which is partly controlled by mS ,
is required to achieve the best H possible. This leads to
inferior performance compared to our specific backbone in
SUN and marginally worse accuracy in CUB. The state-of-
the-art results in AwA2 can be partly explained by the small
number of classes, which are 50 in total, only 10 of which
are unseen.

5.5. Ablation studies

5.5.1. COMPONENT ANALYSIS

We perform a more detailed analysis of how the usage of the
novel component of our approach, the FSL classifier, affects
performance. We experiment with using the FSL classifier
solely during the training of the backbone. During testing,
we follow the standard practise of training a linear classifier
on the synthetic data. We also experiment with using the
FSL classifier only during testing, i.e. simply setting γ = 0
in Equation 6. Results are presented in Figure 3. We can
observe that both regimes yield improvement compared to
the plain backbone. Additionally, regarding the gains in
performance compared to the backbone, the gain of Z2FSL
is greater than the sum of the gains of the two ablation stud-
ies. This shows that end-to-end training yields a significant
improvement and validates that this process renders the gen-
eration discriminative in a manner that explicitly helps the
classifier.

Figure 3. FSL classifier’s effects on performance. We compare
the performance of the f-VAEGAN, the backbone generative ZSL
approach, to the performance of Z2FSL(f-VAEGAN, PN) when
we discard the FSL classifier during the evaluation and use a lin-
ear classifier instead, the performance of Z2FSL(f-VAEGAN, PN)
when γ = 0 (Equation 6), i.e. discarding the FSL classifier during
training only, and the complete Z2FSL(f-VAEGAN, PN) (with the
FSL classifier in both settings). The metric presented is the aver-
age per class top-1 accuracy. Performance gains denote absolute
improvement compared to the backbone.

5.5.2. SYNTHETIC VS. REAL SUPPORT SET

We also examine the performance of Z2FSL when using
real supporting examples of seen classes compared to perfor-
mance with synthetic ones. Results are presented in Table 3.
In AwA2 and SUN, the synthetic support results in a better
harmonic mean. On the other hand, in CUB, real support
leads to an increase in performance. Moreover, as we noted
in Section 5.2, the shot for seen classes in the test support set
is controlled by a different hyperparameter than that of un-

End-to-end Generative ZSL via FSL

Table 3. Comparison of our approach, Z2FSL(f-VAEGAN, PN) with real and synthetic support for seen classes. The metrics presented
are: u is the average per class top-1 accuracy of unseen classes, s is the average per class top-1 accuracy of seen class and H their
harmonic mean.

GENERALIZED ZERO-SHOT LEARNING

CUB AWA2 SUN

APPROACH U S H U S H U S H

Z2FSL(F-VAEGAN, PN) (WITH REAL SUPPORT) 47.2 61.2 53.3 49.4 77.7 60.4 48.1 27.4 34.9
Z2FSL(F-VAEGAN, PN) 44.4 58.0 50.3 57.4 80.0 66.8 44.0 32.9 37.6

Table 4. Comparison of our approach, Z2FSL(f-VAEGAN, PN),
with and without pre-training the FSL classifier. The metric pre-
sented is the average per class top-1 accuracy.

ZSL

APPROACH CUB SUN

Z2FSL (NO PRE-TRAINING) 58.0 61.3
Z2FSL 62.5 66.5

seen classes, mS and nS (for testing) respectively 2. These
facts clearly demonstrate the bias towards seen classes the
naive approaches of using all the available training data in
the support set or too many synthetic ones could lead to.

5.5.3. PRE-TRAINING

We also test the effects of pre-training the FSL classifier of
our framework. It makes sense, intuitively, to pre-train it
in an actual FSL setting before the joint training with the
generator, where we choose to train it with a combination
of real and synthetic data. Table 4 shows a decrease in
performance without pre-training, 5.2% absolute decrease
in SUN and 4.5% in CUB to be exact. This illustrates that
training in the FSL setting is essential to avoid overfitting.

6. Conclusions
In this paper, we introduce a novel, end-to-end generative
ZSL framework, Z2FSL. Z2FSL uses the same supervised
classifier during both training and testing. We choose a FSL
algorithm to fill that role, since the choice of classifier is
restricted by the ZSL setting. In this manner, we also couple
the two low-data regimes. We formulate our framework
so as to allow a broad class of generative ZSL approaches
and FSL classifiers to be integrated. Empirically, we show
that our framework improves upon the results of the plain
generative approach. Extensive ablation studies reveal that
the improvement originates from the fact that the generated
samples of the generative net are rendered more discrimina-

2The results in Table 3 are achieved with a nS that is roughly
two orders of magnitude greater than mS

tive in a way that explicitly helps the classifier. In addition,
these studies demonstrate the advantages of being able to
use a pre-trained classifier. Our results are state of the art or
competitive across all benchmarks. We also show that using
synthetic samples for seen classes as well as decreasing the
number of samples of these classes compared to unseen
ones can improve performance in GZSL.

Our future plans include further investigating and mitigat-
ing the bias towards seen classes in the GZSL. Another
research direction we plan to investigate are techniques to
better train the FSL classifier separately of the generator.
Initial thoughts include consistent fine-tuning on generated
samples of unseen classes after the joint training and exten-
sive pre-training on other data sets. Since we now have an
end-to-end process to train the generative net, it is possi-
ble to completely dispose of the generative framework and,
therefore, we also plan to investigate this training regime.

References
Akata, Z., Perronnin, F., Harchaoui, Z., and Schmid, C.

Label-embedding for image classification. IEEE Trans.
Pattern Anal. Mach. Intell., 38(7):1425–1438, 2015a.

Akata, Z., Reed, S., Walter, D., Lee, H., and Schiele, B.
Evaluation of output embeddings for fine-grained image
classification. In IEEE Conf. Comput. Vis. Pattern Recog.,
pp. 2927–2936, 2015b.

Al-Halah, Z., Tapaswi, M., and Stiefelhagen, R. Recovering
the missing link: Predicting class-attribute associations
for unsupervised zero-shot learning. In IEEE Conf. Com-
put. Vis. Pattern Recog., pp. 5975–5984, 2016.

Antoniou, A., Storkey, A., and Edwards, H. Data Augmen-
tation Generative Adversarial Networks. arXiv preprint
arXiv:1711.04340, 2017.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.
In Int. Conf. Mach. Learn., pp. 214–223, 2017.

Bengio, Y., Léonard, N., and Courville, A. Estimating or
propagating gradients through stochastic neurons for con-

End-to-end Generative ZSL via FSL

ditional computation. arXiv preprint arXiv:1308.3432,
2013.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are Few-shot Learners.
arXiv preprint arXiv:2005.14165, 2020.

Changpinyo, S., Chao, W.-L., Gong, B., and Sha, F. Synthe-
sized Classifiers for Zero-shot Learning. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 5327–5336, 2016.

Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacob-
son, A., and Fidler, S. Learning to predict 3d objects
with an interpolation-based differentiable renderer. In
Adv. Neural Inform. Process. Syst., pp. 9609–9619, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In IEEE Conf. Comput. Vis. Pattern Recog., pp. 248–255,
2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
volume 1, pp. 4171–4186. Association for Computational
Linguistics, 2019.

Elhoseiny, M. and Elfeki, M. Creativity inspired Zero-shot
Learning. In Int. Conf. Comput. Vis., pp. 5784–5793,
2019.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J.,
Ranzato, M., and Mikolov, T. Devise: A deep visual-
semantic embedding model. In Adv. Neural Inform. Pro-
cess. Syst., pp. 2121–2129, 2013.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Adv. Neural Inform.
Process. Syst., pp. 2672–2680, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Adv. Neural Inform. Process. Syst., pp. 5767–5777,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
ImageNet classification. In Int. Conf. Comput. Vis., pp.
1026–1034, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for image recognition. In IEEE Conf. Comput.
Vis. Pattern Recog., pp. 770–778, 2016.

Huang, H., Wang, C., Yu, P. S., and Wang, C.-D. Genera-
tive Dual Adversarial network for Generalized Zero-shot
Learning. In IEEE Conf. Comput. Vis. Pattern Recog., pp.
801–810, 2019.

Keshari, R., Singh, R., and Vatsa, M. Generalized Zero-Shot
Learning Via Over-Complete Distribution. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 13300–13308, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Int. Conf. Learn. Represent., 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In Int. Conf. Learn. Represent., 2014.

Kodirov, E., Xiang, T., and Gong, S. Semantic Autoen-
coder for Zero-shot Learning. In IEEE Conf. Comput. Vis.
Pattern Recog., pp. 3174–3183, 2017.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Adv. Neural Inform. Process. Syst., pp. 1097–1105, 2012.

Lampert, C. H., Nickisch, H., and Harmeling, S. Attribute-
based classification for Zero-shot visual object catego-
rization. IEEE Trans. Pattern Anal. Mach. Intell., 36(3):
453–465, 2013.

Li, J., Jing, M., Lu, K., Ding, Z., Zhu, L., and Huang, Z.
Leveraging the invariant side of Generative Zero-shot
Learning. In IEEE Conf. Comput. Vis. Pattern Recog., pp.
7402–7411, 2019a.

Li, K., Min, M. R., and Fu, Y. Rethinking Zero-shot Learn-
ing: A conditional visual classification perspective. In
Int. Conf. Comput. Vis., pp. 3583–3592, 2019b.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. In Int.
Conf. Learn. Represent., 2013.

Narayan, S., Gupta, A., Khan, F. S., Snoek, C. G., and
Shao, L. Latent embedding feedback and discrimina-
tive features for zero-shot classification. arXiv preprint
arXiv:2003.07833, 2020.

Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens,
J., Frome, A., Corrado, G. S., and Dean, J. Zero-shot
learning by convex combination of semantic embeddings.
In Int. Conf. Learn. Represent., 2013.

Odena, A., Olah, C., and Shlens, J. Conditional image
synthesis with Auxiliary Classifier GANs. In Int. Conf.
Mach. Learn., pp. 2642–2651, 2017.

Park, S., Ryu, H., Lee, S., Lee, S., and Lee, J. Learning
predict-and-simulate policies from unorganized human
motion data. ACM Trans. Graph., 38(6):1–11, 2019.

End-to-end Generative ZSL via FSL

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Adv. Neural Inform. Process.
Syst., pp. 8026–8037, 2019.

Patterson, G. and Hays, J. Sun attribute database: Discov-
ering, annotating, and recognizing scene attributes. In
IEEE Conf. Comput. Vis. Pattern Recog., pp. 2751–2758.
IEEE, 2012.

Qiao, R., Liu, L., Shen, C., and Van Den Hengel, A. Less
is more: Zero-shot Learning from online textual docu-
ments with noise suppression. In IEEE Conf. Comput.
Vis. Pattern Recog., pp. 2249–2257, 2016.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan,
T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K.,
et al. Chexnet: Radiologist-level pneumonia detection
on chest X-rays with Deep Learning. arXiv preprint
arXiv:1711.05225, 2017.

Romera-Paredes, B. and Torr, P. An embarrassingly simple
approach to Zero-shot Learning. In Int. Conf. Mach.
Learn., pp. 2152–2161, 2015.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention, pp. 234–241.
Springer, 2015.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of Go without
human knowledge. Nature, 550(7676):354–359, 2017.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Adv. Neural Inform. Process.
Syst., pp. 4077–4087, 2017.

Starke, S., Zhang, H., Komura, T., and Saito, J. Neural state
machine for character-scene interactions. In ACM Trans.
Graph., volume 38, pp. 209–1, 2019.

Verma, V. K., Brahma, D., and Rai, P. Meta-Learning for
Generalized Zero-Shot Learning. In AAAI, pp. 6062–
6069, 2020.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching networks for One shot learning. In Adv. Neural
Inform. Process. Syst., pp. 3630–3638, 2016.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The Caltech-UCSD Birds-200-2011 dataset. 2011.

Wang, Y.-X., Girshick, R., Hebert, M., and Hariharan, B.
Low-shot learning from imaginary data. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 7278–7286, 2018.

Weston, J., Bengio, S., and Usunier, N. Large scale im-
age annotation: Learning to rank with joint word-image
embeddings. Machine learning, 81(1):21–35, 2010.

Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., and
Schiele, B. Latent embeddings for zero-shot classification.
In IEEE Conf. Comput. Vis. Pattern Recog., pp. 69–77,
2016.

Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. Zero-
shot Learning—A comprehensive evaluation of the good,
the bad and the ugly. IEEE Trans. Pattern Anal. Mach.
Intell., 41(9):2251–2265, 2018a.

Xian, Y., Lorenz, T., Schiele, B., and Akata, Z. Feature
generating networks for zero-shot learning. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 5542–5551, 2018b.

Xian, Y., Sharma, S., Schiele, B., and Akata, Z. f-VAEGAN-
D2: A feature generating framework for any-shot learn-
ing. In IEEE Conf. Comput. Vis. Pattern Recog., pp.
10275–10284, 2019.

Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. Unsu-
pervised learning of depth and ego-motion from video. In
IEEE Conf. Comput. Vis. Pattern Recog., pp. 1851–1858,
2017.

Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., and Elgammal,
A. A Generative Adversarial approach for Zero-shot
Learning from noisy texts. In IEEE Conf. Comput. Vis.
Pattern Recog., pp. 1004–1013, 2018.

End-to-end Generative ZSL via FSL

A. Evaluation Metrics
For the sake of completeness, we formally define the
the Zero-Shot Learning (ZSL) and Generalized Zero-Shot
Learning (GZSL) metrics we use. We evaluate our frame-
work with the average per-class [top-1] accuracy for ZSL,
defined as

accY =
1

‖Y‖
∑
y∈Y

correct predictions in y
samples in y

, (7)

where in the case of ZSL Y are the unseen classes. For
GZSL, we use the harmonic mean of the average per-class
accuracy of seen classes and that of unseen classes, defined
as

H = 2
u · s
u+ s

, (8)

where we define u = accY for unseen classes and s =
accY for seen classes for convenience and adherence to
established notation.

B. Hyperparameters
We present the rest of the hyperparameters for the pre-
training of the Few-Shot Learning (FSL) algorithm, the
Prototypical Network (PN), in Table 5 and for the train-
ing within our framework, Z2FSL(f-VAEGAN, PN), in Ta-
ble 6, both for Zero-Shot Learning (ZSL) and General-
ized Zero-shot Learning (GZSL).

C. Classifier Fine-tuning
After the joint training of the FSL classifier and the generator
of the backbone, we fine-tune the FSL classifier on samples
generated by the generator conditioned on attributes of the
unseen classes. This basically means that the generator
provides both the support and the query set. We train for
25 episodes, using the same learning rate as in the other
two settings the classifier is trained. We also retain the
hyperparameters of the episode in this training regime the
same as in the joint training of the FSL classifier and the
generator. This process provides marginal improvement, if
any, and is generally inconsistent. Further work is required
to stabilize it.

D. Prototypical Network initialization
We initialize the weight matrices of the PN by setting all the
diagonal elements equal to 1, while the rest are randomly
sampled i.i.d. from N (. ; 0, 0.01). We do so to bias the
PN to preserve its input space structure as much as possi-
ble, which we expect to be somewhat discriminative due to
ResNet-101. Notice that we can do so because ResNet-101
yields non-negative values and we use ReLU activations.

This structure can be thought of as similar to a residual layer
(He et al., 2016) routinely used in Convolutional Neural
nets. It is for this reason that all weight matrices in the PN
are square. We observed an increase in validation accuracy
in all settings using this clever initialization trick. We are
unaware of another similar approach in the literature, so
further investigation may be warranted.

E. Data Augmentation
For the extra crops besides the original image, we crop the
original image starting from the desired corner and extend-
ing up to 80% of each dimension and finally resize the crop
to match the original image’s dimensions.

End-to-end Generative ZSL via FSL

Table 5. Hyperparameter configuration per setting and data set for the Prototypical Network’s pre-training. From top to bottom, the
hyperparameters presented are the learning rate of the FSL algorithm αh, the number of episodes Nh, the number of hidden layers nh, the
number of classes in an episode nW , the number of support examples per class nS , and the number of queries per class nQ.

ZSL GZSL

HYPERPARAMETER CUB AWA2 SUN CUB AWA2 SUN

αh 5 · 10−5 10−5 10−5 10−3 10−5 5 · 10−5

Nh 12000 15000 10000 10000 12000 8000
nh 0 1 1 0 1 1
nW 25 10 40 25 10 50
nS 5 5 5 5 5 5
nQ 10 15 5 10 15 2

Table 6. Hyperparameter configuration per setting and data set for our main experiments. We have the ZSL learning rate αf , the coefficient
of the WGAN loss β, the coefficient of the FSL loss γ, the number of classes in a training episode nW , the number of generations per
class in during training nS , the number of generations per seen class during testing mS , the number of “queries” per class in a training
episode nQ, and the number of episodes N .

ZSL GZSL

HYPERPARAMETER CUB AWA2 SUN CUB AWA2 SUN

αf 10−4 10−4 10−4 10−4 10−4 10−4

β 100 100 100 100 100 100
γ 100 100 100 10 10 10
nW 25 10 80 25 10 80
nS 5 5 5 5 5 5
mS - - - 5 2 5
nQ 10 15 5 10 15 5
N 8000 8000 6500 6500 8500 8000

