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Abstract

Time-frequency distributions that evaluate the signal’s energy content both in the time and frequency

domains are indispensable signal processing tools, especially, for non-stationary signals. Various short-

time energy computation schemes are used in practice, including the mean squared amplitude and Teager-

Kaiser energy approaches. Herein, we focus primarily on the short- and medium-term properties of these

two energy estimation schemes, as well as, on their performance in the presence of additive noise. To

facilitate this analysis and generalize the approach, we use a harmonic noise model to approximate the

noise component. The error analysis is conducted both in the continuous- and discrete-time domains,

deriving similar conclusions. The estimation errors are measured in terms of normalized deviations from

the expected signal energy and are shown to greatly depend on both the signals’ spectral content and

the analysis window length. When medium- and long-term analysis windows are employed, the Teager-

Kaiser energy operator is proven superior to the common squared energy operator, provided that the

spectral content of the noise is more lowpass than the corresponding signal content, and vice versa.
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However, for shorter window lengths, the Teager-Kaiser operator always outperforms the squared energy

operator. The theoretical results are experimentally verified for synthetic signals. Finally, the performance

of the proposed energy operators is evaluated for short-term analysis of noisy speech signals and the

implications for speech processing applications are outlined.

Index Terms

Time-frequency analysis, robustness, harmonic analysis, noise, spectral analysis, bandlimited

signals, feature extraction, signal detection, estimation.

EDICS Category: NSP-APPL: Applications of nonlinear signal processing, DSP-TFSR:

Time-frequency analysis and signal representation

I. INTRODUCTION

Time-frequency distributions estimating the signal energy content in time and frequency bins are

considered indispensable for the study of non-stationary signals. Such signals frequently appear in many

applications, including speech, radar, geophysical, biological, and transient signal analysis and processing.

In this context, various time-frequency distributions have been studied and implemented [5], [9], with

some generalizations found in [1].

In signal processing applications, signals are often corrupted by noise, attributed to the environment,

sensor or channel. Thus, the computation of such time-frequency distributions can be generalized as an

energy estimation problem in the presence of noise. Robust energy estimation is a complex problem,

much studied over the years. Despite these intensive research efforts, certain aspects still remain under-

researched. Moreover, the extension of these ideas to the discrete-time domain is neither clear nor

straightforward. The most widely used energy estimation scheme is based on the Squared Energy Operator

(SEO) S[·], where the squared signal is the desired instantaneous energy term [25]:

S [x(t)] , x2(t) (1)

An alternative scheme is based on the Teager-Kaiser Energy Operator (TEO) [15], [20], [21]

Ψ [x(t)] , ẋ2(t)− x(t)ẍ(t) (2)

where ẋ(t) = dx(t)/dt. This latter nonlinear operator approach has been mainly used for the energy

estimation of AM-FM representations of the original signal.

The TEO approach was first proposed by Teager [32] and further investigated by Kaiser [15]. Significant

research on the theory and applications of the TEO operator has been conducted during the past 15 years.
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Its long-term properties have been studied in detail in [20], [21], [26] and for noisy signals in [2] and

[3]. Its AM-FM demodulation capabilities have been compared in [26] with those of the classic linear

integral approach of the Hilbert transform or of TEO-inspired instantaneous FM tracking schemes based

on adaptive linear prediction [11], [31]. The applications of TEO include speech analysis [6], [21], [27],

robust feature extraction for speech recognition [7], [8], communications [30], and image texture analysis

[16], [18]. So far, the majority of the analysis in this area has mainly dealt with the properties of TEO-

based demodulation algorithms and not with the operator itself. Additionally, the short-and medium-term

properties of the TEO have not been formally investigated. In this paper, we investigate the properties of

the TEO as a function of the window length. Furthermore, we compare the TEO’s performance with that

of the SEO for the problem of short-term energy estimation in additive noise. However, the effects of

bandpass filtering1 on the short-time energy estimation process is not addressed here, for more information

see [9].

The main contributions of this paper include:

(i) The TEO and SEO performance is investigated for short and medium-length analysis windows. It is

shown that performance is a function of the window length. It also depends on the signal and noise

spectral characteristics.

(ii) The approximation of the noise with a discrete harmonic model is proposed, significantly simplifying

the noisy signal energy analysis and offering insight into the operators’ behavior.

(iii) The relationship between signal differentiation and energy estimation is presented. Under certain

conditions, the energy operators’ performance is improved when they are applied to the signal’s

time-derivatives.

(iv) The effect of discrete-time sampling on the the performance of the energy operator is investigated.

This effect becomes significant when the signal has high frequency content and the sampling

frequency is comparable to the Nyquist rate.

The proposed analysis provides some general guidelines on selecting the appropriate energy operator

with respect to the minimization of the short-term energy estimation error. This error is primarily based

on the spectral characteristics of the signal and noise, as well as, on the analysis window length.

This paper is organized as follows: In Section II, the clean AM-FM and the harmonic noise models

are introduced. In this context, the long-term average properties of the TEO and SEO are presented.

1The TEO gives meaningful results only if applied to narrowband signals [20]. Henceforth, both clean and noise signals are

considered either as narrowband or as pre-processed via narrowband filtering.
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Then, the short- and medium-term average energy estimates and their performance are studied in Section

III. In Section V a similar analysis is performed for discrete-time signals. The application of the energy

operators to the signal derivatives is investigated in Section IV. The effects of discrete-time sampling on

the energy estimation scheme are examined in Section VI. Finally, experimental results for short-term

energy computation of synthetic and real speech signals are presented in Sections VII and VIII. The

overall conclusions are provided in Section IX.

II. PERFORMANCE OF ENERGY OPERATORS IN NOISE

A. Signal and Noise Model

Consider the narrowband input noisy signal

y(t) = x(t) + v(t) (3)

where x(t) are the desired clean and v(t) the uncorrelated noise signal, respectively. Herein, we use a

narrowband amplitude-frequency modulation (AM-FM) model for the clean signal:

x(t) = a(t) cos(φx(t)) (4)

where φx(t) =
∫ t
0 ωx(τ)dτ + θx,

ωx(t) =
dφx(t)

dt

and a(t) are the instantaneous frequency and amplitude signals, and θx is a phase offset. The underlying

assumption of the AM-FM model is that both information signals a(t), ωx(t) do not vary too fast or too

greatly compared to the carrier frequency.

The noise signal v(t) is approximated by a sum of K stationary sinusoids vi(t) with fixed amplitudes

bi, frequencies ωi and random phase offsets θi:

v(t) =
K∑

i=1

bi cos (φi(t)), φi(t) = ωit + θi (5)

where each random phase offset θi is uniformly distributed over [−π, π], and the component frequencies

are assumed distinct, i.e., ωi 6= ωj for i 6= j. An assumption for independent, identically distributed

(i.i.d.) phase offsets is only necessary for the results presented in Section III and Appendix II; i.e., all

the major theoretical results hold true for arbitrary phase values. In general, the proposed model (5)

can approximate a wide range of known noise models when the amplitude and phase parameters are

appropriately chosen [24].
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B. TEO-Based Noisy Energy Estimation

By applying the TEO to the noisy signal y(t) and ignoring, henceforth, the time index t for notational

simplicity, we obtain (see also [3])

Ψ[y] = Ψ[x] + Ψ[v] + 2ẋv̇ − ẍv − xv̈︸ ︷︷ ︸
Cross−Terms

(6)

Thus, the TEO output of the noisy signal is the sum of the individual signal and noise Teager energies

plus some cross-terms. Applying Ψ to the AM-FM signal yields

Ψ[x] = (ȧ cos(φx)− aωx sin(φx))2 − a cos(φx) ·

· (ä cos(φx)− 2ȧωx sin(φx)− aω̇x sin(φx)− aω2
x cos(φx)

)

Assuming that a(t) varies slowly so that Ψ[a] ≈ 0, (as shown in [20])

Ψ[x] ≈ (aωx)2 +
1
2
a2ω̇x cos(2φx) (7)

According to [3], [20], the long-term time-average <Ψ[x]> is given by2

<Ψ[x]>≈<a2ω2
x> (8)

where the quantity <f(t)> for an arbitrary signal f(t) is defined as the signal time-average

<f(t)>, 1
T

∫ T

0
f(t)dt (9)

and T is the duration of the analysis window. In the case of window lengths T smaller than the smallest

signal period (with respect to its spectral content), this equation provides the short-term average. When T

exceeds the largest signal period (or equivalently T → +∞), the < · > shall imply long-term averages.

Henceforth, if it is not otherwise stated, we shall assume that the long-term averages are estimated.

By applying the TEO to the noise (5), we obtain

Ψ[v]=
∑

i

(biωi)2+
1
2

∑

i

∑

j 6=i

bibjωi(ωi + ωj) cos(φi − φj)

+
1
2

∑

i

∑

j 6=i

bibjωi(ωi − ωj) cos(φi + φj) (10)

2In [20], the instantaneous frequency signal is modeled as ωx(t) = ωc + q(t), where ωc is its center frequency and q(t) a

zero-mean signal fluctuating around the center frequency. By considering all assumptions about q(t) presented in [20], it follows

that the long-term time-average < cos(2φx(t)) > is approximately zero.
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where i, j = 0, ..,K − 1. Its time-average is

<Ψ[v]>≈
∑

i

b2
i ω

2
i (11)

The rest of the cross-terms (of Ψ[v]) consist of sums of cosines with different amplitude and frequency

values, thus their long-term time-averages equal to zero [3]. Denoting the cross-terms of Ψ[y(t)], (6), as

Ψcross[x, v] = 2ẋv̇ − xv̈ − ẍv (12)

and substituting the signal representations of (4) and (5) yields

Ψcross[x, v] =

1
2

∑

i

[bi

(
aω2

x + aω2
i − ä− 2aωxωi

) · cos(φx + φi) +

bi

(
aω2

x + aω2
i − ä + 2aωxωi

) · cos(φx − φi) +

bi (2ȧωx + aω̇x − 2ȧωi) · sin(φx + φi) +

bi (2ȧωx + aω̇x + 2ȧωi) · sin(φx − φi)]

For a slowly varying a(t), the Ψcross[x, v] is approximated by

Ψcross[x, v] ≈
1
2

∑

i

abi[(ωx − ωi)
2 cos(φx + φi) + (ωx + ωi)

2 cos(φx − φi)

+ ω̇x (sin(φx + φi) + sin(φx − φi))] (13)

By similar reasoning as above, <Ψcross[x, v]>≈ 0 (it is shown analytically in Appendix I for the case

of a sinusoid signal x(t)). Thus, the average Teager energy of the noisy signal is given by

<Ψ[y]>≈<a2ω2
x> +

∑

i

b2
i ω

2
i (14)

The normalized TEO deviation DT is defined as the ratio of the difference between the noisy and clean

energy estimates over the clean estimate:

DT (y) =
<Ψ[y]> − <Ψ[x]>

<Ψ[x]>
≈

∑
i b

2
i ω

2
i

<a2ω2
x>

(15)

The difference <Ψ[y]> − <Ψ[x]> always takes non-negative values for long-term analysis of narrowband

signals. However, no such guarantees exist for wideband signals, where the approximation in (14) is not

applicable. In such cases, one might choose, instead, to compute the absolute value of the normalized

TEO deviation.
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C. SEO-Based Noisy Energy Estimation

Applying the SEO to the noisy signal

S[y] = x2 + v2 + 2xv = S[x] + S[v] + Scross[x, v] (16)

where Scross[x, v] are the SEO cross-terms. Substituting the clean and noise signals,

S[x] = Sd[x] + Se[x] =
1
2
a2 +

1
2
a2 cos(2φx) (17)

S[v] =
1
2

∑

i

b2
i (1 + cos(2φi)) (18)

Scross[x, v] =
∑

i

abi (cos(φx + φi) + cos(φx − φi))

+
1
2

∑

i

∑

j 6=i

bibj (cos(φi + φj) + cos(φi − φj)) (19)

where Sd[x] = 1
2a2 and Se[x] = 1

2a2 cos(2φx) are the desired and error components of S[x], respectively.

For the reasons stated in the analysis of Ψcross[x, v], it holds that <Scross[x, v]>≈ 0, <cos(2φx)>≈ 0,

<cos(2φi)>≈ 0. Thus, the long-term averaged SEO estimate <S[y]> is given by

<S[y]>≈ 1
2

<a2> +
1
2

∑

i

b2
i (20)

and the normalized SEO deviation DS is given by3

DS(y) =
<S[y]> − <Sd[x]>

<Sd[x]>
≈

∑
i b

2
i

<a2>
(21)

Henceforth, the signal index will be ignored in DT and DS , for notational simplicity.

Using Parseval’s theorem4 [22], the normalized SEO deviation DS can be expressed as:

DS =
∑

i b
2
i∫

B |X(ω)|2dω

where X(ω) is the Fourier Transform of the clean signal and the integral is evaluated within the frequency

band of interest B. Similarly, using relations presented in [5], [29], the normalized TEO deviation DT
can be expressed in the frequency domain as:

DT =
∑

i b
2
i ω

2
i∫

B ω2|X(ω)|2dω

3Note that <S[x]> can be used instead of <Sd[x]> in (21) because <Se[x]>≈ 0 for long-term averaging. For (very)

short-time averages, however, the term <Se[x]> becomes relevant as detailed in Section III-B.
4The equations dictated by the Parseval Theorem are theoretically valid only when infinite time has elapsed, otherwise a

finite-length window should be introduced. Herein, we assume that the window length is long enough to enable the omission

of such windows from the equations.
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The TEO deviation can be seen as the ratio of the second order spectral centroid of noise over the signal

[23], [29], while, the SEO deviation is the ratio of the zero-th order spectral centroids. The SEO and

TEO deviations are approximately equal, i.e., DS ≈ DT , when: (i) the signal and noise occupy the same

very narrow frequency band, or (ii) the signal and noise have very similar spectral profiles (ideally scaled

version of each other). In general, when the noise is concentrated in frequencies lower than those of the

signal, the TEO outperforms the SEO and vice-versa. Examples elucidating these phenomena and the

performance of the energy operators are presented in Section VII.

III. MEDIUM-TERM AND SHORT-TIME PROPERTIES OF ENERGY OPERATORS

The analysis presented in the previous section assumes that the duration of the averaging window is

long enough to ignore all transient deviation terms. Next, the performance of the energy operators is

analyzed for different window lengths, namely: (i) Medium-term analysis: The highpass transient terms

can be ignored but not the lowpass terms that have not been fully averaged out and thus, contribute

to the estimation error, and (ii) Short-term analysis: All transient terms (both highpass and lowpass)

contribute to the estimation error and should be taken into account in the analysis. The terms “medium-

term” and “short-term” do not correspond to a fixed range of window duration T . The actual short-term

and medium-term range is determined by the spectral content of the signal (and noise). For example, for

a 100 Hz sinusoid, the short-term range would be approximately from 0 to 10 ms (one period of the

signal), and the mid-range from 10 to 100 ms.

In general, the normalized TEO and SEO deviations can be separated into three components: (i) the

long term deviation, as in (6) and (19), (ii) the lowpass deviation component that consists of sinusoidal

terms corresponding to differences of frequencies, henceforth referred to as DT − and DS−, respectively,

and (iii) the highpass deviation component consisting of sinusoids with angular frequencies equal to the

sums of the individual component frequencies, henceforth referred to as DT + and DS+

DT =
∑

i bi
2ωi

2

<a2ω2
x>

+DT − +DT + (22)

DS =
∑

i bi
2

<a2>
+DS− +DS+ (23)

Next, we analyze the behavior of the lowpass and highpass transient terms assuming that x(t) is a

sinusoid, i.e., a(t) = a = constant, and ωx(t) = ωx = constant. The following analysis is based on the

results derived in Appendices I and II.
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A. Medium-Term Time Average Properties

The lowpass transient terms are given by

DT − =
∑

i

(ωx + ωi)2

2ω2
x

biDxi

aT (ωx − ωi)
+

∑

i

∑

j 6=i

ωi(ωi + ωj)
2ω2

x

bibjDij

a2T (ωi − ωj)
(24)

DS− =
∑

i

2biDxi

aT (ωx − ωi)
+

∑

i

∑

j 6=i

bibjDij

a2T (ωi − ωj)
(25)

where Dij contains sinusoids with frequencies ωi−ωj , as defined in Appendix I. A direct correspondence

exists between the two terms in DT − and DS−. Based on the assumption that ωi, ωj are in the vicinity

of ωx, then (ωx +ωi)2/(2ω2
x) ≈ 2 and ωi(ωi +ωj)/(2ω2

x) ≈ 1. Thus, the first order approximation gives:

DT − ≈ DS− (26)

and the TEO and SEO performance is similar for medium-length windows. When the spectral content of

the noise is symmetrically distributed around ωx then5 DT − = DS−. However, when the spectral content

of the noise is mostly concentrated over frequencies lower than ωx, the medium-term performance of the

TEO is better than that of the SEO (and vice versa for noise at frequencies higher than ωx). Thus, the

relative medium-term TEO and SEO performance appears quite similar to the corresponding long-term

performance of these operators.

B. Short-Time Average Properties

The highpass transient terms equal to

DT + =
∑

i

(ωx − ωi)2

2ω2
x

biSxi

aT (ωx + ωi)
+

∑

i

∑

j 6=i

ωi(ωi − ωj)
2ω2

x

bibjSij

a2T (ωi + ωj)
(27)

DS+ =
∑

i

2biSxi

aT (ωx + ωi)
+

∑

i

∑

j 6=i

bibjSij

a2T (ωi + ωj)
+

Sxx

2Tωx
+

∑

i

b2
i Sii

2a2Tωi
(28)

5A fine detail to be noted here is that for ωi = ωx +d the TEO deviation is larger, while the opposite is true for ωi = ωx−d.

When the sum of these deviations is computed, the TEO deviation will be slightly higher than that of the SEO because the

TEO deviation relation is quadratic with frequency. The result is most noticeable for large bandwidths, both for medium- and

long-term.
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where Sij contains sinusoids with frequencies ωi + ωj , as defined in Appendix I. There is a direct

correspondence between the first two terms of DT + and DS+; however, DS+ contains two additional

terms. Given that ωi, ωj are in the vicinity of ωx, as above, it follows that (ωx − ωi)2/(2ω2
x) ¿ 1 and

ωi|ωi − ωj |/(2ω2
x) ¿ 1. Thus, the values of DT + are much smaller than those of DS+, on average.

Formally, for small values of T , it holds that

E{(DS+)2} À E{(DT +)2} (29)

where E(.) denotes expectation over the random phases of signal and noise. The mean square normalized

deviation values are analytically estimated in Appendix II, assuming that the noise component phases are

i.i.d. uniformly distributed. For all the reasons stated above, the short-term TEO performance is expected

to be better than that of the SEO. It is, also, important to note that all terms in DT + and DS+ are inversely

proportional to the frequency content, i.e., the frequency ωx. Consequently, for smaller frequency values,

the deviation terms are further emphasized.

In the general case of AM-FM signals, conclusions similar to the above can be derived, since the

deviation terms share the same form. However, the time-varying nature of the signals increases the

complexity of the analysis and the mathematical simplicity of the results cannot be reached.

IV. APPLYING ENERGY OPERATORS TO SIGNAL DERIVATIVES

In this section, the performance of the energy operators applied to signal derivatives is evaluated, and

interesting analogies are drawn between the long-term behavior of the TEO and SEO. The `th-order time

derivative x(`)(t) of the AM-FM signal x(t) defined in (4) can be approximated by [3]

d`x(t)/dt` , x(`)(t) ≈ a(t)ω`
x(t) cos

(
φx(t) + `

π

2

)
(30)

By applying the TEO on x(`)(t), we get

Ψ
[
x(`)

]
≈ a2ω2(`+1)

x (31)

as shown in Appendix III. Following the same steps outlined in (6)-(15) for the 0th derivative case, the

averaged TEO output of the `th-order time derivative of the noisy signal is

<Ψ
[
y(`)

]
>≈<a2ω2(`+1)

x > +
∑

i

b2
i ω

2(`+1)
i (32)

and the normalized TEO deviation defined as in (15) can be approximated by

DT (y(`)) ≈
∑

i b
2
i ω

2(`+1)
i

<a2ω
2(`+1)
x >

(33)
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Similarly, the long-term average SEO energy of y(`)(t) is

<S[y(`)]>≈ 1
2

(
<a2ω2`

x > +
∑

i

b2
i ω

2`
i

)
(34)

and the normalized SEO deviation

DS(y(`)) ≈
∑

i b
2
i ω

2`
i

<a2ω2`
x >

(35)

Comparing the long-term performance of the TEO and SEO in terms of normalized deviation, shown

in (33) and (35), respectively, it is clear that the TEO applied to the (`− 1)th signal derivative y(`−1)(t)

performs equivalently to the SEO applied to the `th signal derivative y(`)(t). This is experimentally

verified in Section VII-B. However, for very short-term averaging, the performance of the TEO remains

superior to that of the SEO as discussed in Section III-B.

To better understand the behavior of the TEO (or SEO) applied to high-order time derivatives of a

noisy signal, note the ω2(`+1) frequency weighting term in the numerator and denominator of (33). The

normalized TEO deviation according to (33) is equal to the ratio of the 2(` + 1)-order noise spectral

centroid over that of the signal. Thus, for noise that is spectrally concentrated at frequencies well below

those of the signal, the normalized TEO deviation decreases6 with `. Overall, the short-, medium- and

long-term qualitative behavior of TEO (and SEO) outlined in Sections II and III holds also for the signal

derivatives, although, the effects are amplified by additional frequency weighting.

V. PERFORMANCE OF DISCRETE-TIME ENERGY OPERATORS IN NOISE

The discrete-time signals are derived by sampling the corresponding continuous-time ones for t = nTs,

x[n] = A[n] cos(Φx[n])

v[n] ≈
K∑

i=1

vi[n] =
K∑

i=1

Bi cos(Φi[n])
(36)

where Ts is the sampling period and A[n] = a(nTs), Bi = bi = constant, Φx[n] = φx(nTs), Φi[n] =

φi(nTs). As proposed in [20], [21] for the time-differentiation operation dΦx[n]/dn, the integer time

index n is symbolically treated as a continuous variable. That is,

Ωx[n] , ωx(nTs) · Ts and Ωi[n] , ωi · Ts (37)

Finally, the noise-corrupted discrete-time signal is represented by y[n] = x[n] + v[n].

6Although the TEO deviation decreases with `, the desired term <a2ω
2(`+1)
x > also becomes increasingly frequency weighted,

a potentially undesired effect.
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Complementary to the continuous-time domain analysis of Sections II and III, a noisy energy analysis

for the corresponding discrete-time signals is presented next. The discrete-time squared energy operator

(DSEO) is defined, following (1), as S [x[n]] , x2[n]. Further, the discrete-time Teager-Kaiser energy

operator (DTEO) is given, when the TEO time-derivatives are approximated by one-sample differences

[21], by

Ψd[x[n]] ,
(
x2[n]− x[n + 1] · x[n− 1]

)
/T 2

s (38)

Applying the DTEO to the noisy discrete signal gives

Ψd[y[n]] = Ψd[x[n]] + Ψd[v[n]] + Ψd
cross[x[n], v[n]] (39)

where the DTEO cross-terms are

Ψd
cross[x[n], v[n]] = (2x[n]v[n]− x[n + 1]v[n− 1]

−x[n− 1]v[n + 1])/T 2
s =

=
∑

i

(2A[n]Bi cos(Φx[n]) · cos(Φi[n])−

A[n + 1]Bi cos(Φx[n + 1]) · cos(Φi[n− 1])−

A[n− 1]Bi cos(Φx[n− 1]) · cos(Φi[n + 1]))/T 2
s (40)

The Ψd
cross[x[n], v[n]] terms consist of products of cosines with phases Φx, Φi. Therefore, their long-

term averages approximately equal zero, similarly to the results obtained for the continuous-time case in

Section II. So

<Ψd[y]>≈<Ψd[x]> + <Ψd[v]> (41)

where <Ψd[x]>, <Ψd[v]> are the averaged clean and noise discrete-time TEO energies, respectively.

The first term is approximated [20], [21] by

<Ψd[x[n]]>=
<A2[n] sin2(Ωx[n])>

T 2
s

≈ <A2[n]Ω2
x[n]>

T 2
s

(42)

The average noise DTEO output is approximated by

< Ψd[v[n]] >≈ 1
T 2

s

∑

i

B2
i Ω2

i (43)

By combining (41)-(43), we obtain7

<Ψd[y[n]]>≈ 1
T 2

s

(
<A2[n]Ω2

x[n]> +
∑

i

B2
i Ω2

i

)
(44)

7The approximation is exact when Ts → 0. In general, the approximation error is small under certain conditions detailed in

Section VI.
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Thus, the discrete-time DTEO deviation DT d is given by

DT d(y[n]) =
∑

i B
2
i Ω2

i

<A2[n]Ω2
x[n]>

(45)

similarly to the continuous-time case.

The discrete-time analysis concerning the squared energy operator (DSEO) is straightforward,

S[y[n]] = S[x[n]] + S[v[n]] + Scross[x[n], v[n]]

where

S[x[n]] =
1
2
A2[n] (1 + cos(2Φx[n])) (46)

S[v[n]] =
1
2

∑

i

B2
i (1 + cos(2Φi[n])) (47)

and

Scross [x[n], v[n]] = 2
∑

i

A[n]Bi cos(Φx[n]) cos(Φi[n])

+
∑

i

∑

j 6=i

BiBj cos(Φi[n]) cos(Φj [n]) (48)

The long-term averages of all DSEO cross-term can be approximated by <Scross [x[n], v[n]]>≈ 0, as

stated above. Thus, the long-term averaged DSEO output is given by

<S [y[n]]>≈ 1
2

(
<A2[n]> +

∑

i

B2
i

)
(49)

and the discrete-time DSEO deviation DSd is

DSd(y[n]) =
∑

i B
2
i

< A2[n] >
(50)

DT d and DSd can be considered as the discrete-time approximations of the continuous-time deviations,

(45) and (50) (this holds true for the case of short- and medium-length analysis windows too, however,

these results are not further elaborated here due to lack of space). The sampling process greatly affects the

DTEO energy estimation process via the approximations made. In this context, the underlying phenomena

hereby described are independent of the sampling period Ts only under certain conditions, detailed in

Section VI. Finally, equations similar to those in Section IV can be obtained for the DTEO and DSEO

when applied to high-order derivatives of the discrete-time signal (approximated as differences).
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VI. DISCRETE TIME TEO APPROXIMATION ERROR

The discretization of the TEO introduces an approximation error due to the use of one-sample

differences. The DTEO approximation error ∆ evaluated at t = nTs is

∆ , (a(t)ωx(t))2|t=nTs
−A2[n] sin2 (Ωx[n]) /T 2

s ⇒

∆ = a2(nTs)
[
ω2

x(nTs)− sin2 (ωx(nTs) · Ts) /T 2
s

]

The quality of the approximation depends on the product ωx(nTs)·Ts. In the limiting case, where ωx(nTs)

tends to 0 the approximation error also tends to 0, because

lim
ωx→0

sin (ωx(nTs) · Ts) = ωx(nTs) · Ts

Assuming that ωx(t) = ωc + q(t), where ωc is the center frequency and q(t) a slow-varying signal,

the product ωcTs determines the quality of the approximation. Thus, when processing a signal though a

filterbank, the approximation will be better for low frequency bands than for the high frequency ones. In

addition, the approximation error can be reduced by increasing the sampling frequency.

The quality of the discrete-time approximation is also affected by the input signal’s derivative order.

Consider the Taylor series expansion for a sinusoid

sin(ω(t)) ≈ ω(t)− ω3(t)
6

(51)

where the first term is the desired one and the second term is a rough estimate of the approximation

error. The discretization of the TEO is based on the assumption that

ω2
x(nTs) ≈ sin2 (Ωx[n]) /T 2

s

Similarly, when the TEO is applied on time-derivatives of the signal the discrete-time approximation is8

ω2(`+1)
x (nTs) ≈ sin2(`+1) (Ωx[n]) /T 2(`+1)

s (52)

Thus, the normalized approximation error D
(`)
DTEOapprox. of the DTEO applied to the `th derivative of

the signal is

D
(`)
DTEOapprox. ≈

(
ωx − ω3

x

6

)2(`+1)
− ω

2(`+1)
x

ω
2(`+1)
x

(53)

8By considering the DTEO definition and its one-sample differences one may write

Ψd

[
d`x[n]

dm`

]
≈ Ψd [x[n]− x[n− `]]

This approximation is used here instead of the one proposed in (52); both approximations yield similar results [2], [3].
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The normalized approximation error for higher-order derivatives can be also expressed as follows:

D
(`)
DTEOapprox. ≈ (` + 1) ·D(0)

DTEOapprox. (54)

i.e., the normalized approximation error increases linearly with the derivative order. Overall, for low sam-

pling frequencies, high signal carrier frequencies and/or high-order signal derivatives the approximation

error of the DTEO becomes large, as experimentally verified in Section VII. Note that better discrete-time

approximations have been proposed in the literature [4], [12] and can be used to overcome some of the

DTEO approximation errors.

VII. EXPERIMENTS WITH SYNTHETIC SIGNALS

Next, the proposed energy estimation methods are applied to simple synthetic signals, namely, pure

sinusoids in additive white noise. For pure sinusoids the energy deviation is directly computable and the

validity of the theoretical results can be experimentally verified.

Consider three sinusoids with center frequencies 100, 150 and 200 Hz and phase offset π/4, corrupted

by additive (bandpassed) white noise. The sinusoids were sampled at 2 kHz, resulting in the discrete

signals x1[n] = cos
(

10
100πn + π

4

)
, x2[n] = cos

(
15
100πn + π

4

)
, x3[n] = cos

(
20
100πn + π

4

)
. The white noise

signal was bandpass filtered by a Finite Impulse Response (FIR) filter with 201 coefficients and passband

in the interval [100, 200] Hz. A total of 1000 instances of the bandpassed white noise signal v[n]

were randomly generated and added to the pure sinusoids to create 1000 instances of the noisy signals

yj [n] = xj [n] + v[n], j = 1, 2, 3, with Signal to Noise Ratio (SNR) 0 dB.

The noise signal v[n] can be modeled by K = 100 sinusoid signals vi[n] (i = 1, · · · , 100) with

frequencies linearly distributed over the passband and random phases θi uniformly distributed over the

interval [−π, π], as in (36). The noise amplitude coefficients Bi should be equal and normalized to

ensure SNR = 0 dB. The noise signal can then be approximated by

v[n] ≈
K∑

i=1

1√
K

cos
((

π

10
+

i

K

π

10

)
n + θi

)
(55)
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A. Short-Time Energy of Noisy Sinusoidal Signals

The theoretical long-term values of the normalized deviations DT d(yj) and DSd(yj) were computed

using (45) and (50). The theoretically computed DT d values were

DT d(y1) =
1
K

∑K
i=1

(
π
10 + i

K
π
10

)2

(π/10)2
≈ 2.34

DT d(y2) ≈ 1.04

DT d(y3) ≈ 0.58

Similarly, the DSEO normalized deviation is

DSd(yj) = 1, j = 1, 2, 3

The DTEO and DSEO short-term energy was experimentally estimated using 1000 instances of yj [n].

The root mean square9 (rms) and standard deviation values (std) of the DTEO and DSEO normalized

deviation were experimentally computed and compared with their theoretical values. The results are

presented for a 500 ms averaging window in Table I. Good agreement (typically within one standard

deviation of the rms value) is achieved between the theoretical and experimental results. Small differences

observed between the theoretical and experimental values can be attributed to: (i) the approximation of

time-derivatives with one-sample differences, and (ii) the approximation of narrowband white noise in

(55). It is interesting to note that the DSEO outperforms the DTEO in terms of normalized deviation for

y1[n], and vice versa for y3[n].

The experimentally computed RMS deviations DT d, DSd are shown in Fig. 1(a)-(c) as functions of

the analysis window duration T that takes values between 0 and 500 ms. In Fig. 1(d)-(f), the results are

shown when the experiment was repeated with the phases of the sinusoids xj [n] taking random values

(uniformly) in the interval [−π, π]. Again RMS deviations are shown, averaged over 1000 noisy signal

instances as a function of T . In all plots, transient phenomena fade out as the window length T increases

and the normalized deviations DT d and DSd converge to their long-term values. A detailed analysis of

the transient error terms is presented in Appendices I and II.

Table I and Fig. 1 verify the basic conclusions drawn by the theoretical analysis. Specifically, the DSEO

significantly outperforms the DTEO for noisy signal y1[n], as shown in Fig. 1(a),(d). This is expected

because the clean signal energy is concentrated at 100 Hz, while the noise energy content is placed at

higher frequencies (spread between 100 and 200 Hz with an average approx. at 150 Hz). The opposite

9The experimentally computed rms value can be compared with the mean square deviation analytically derived in Appendix II.
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holds true for the case of y3[n], where the signal energy is now placed at a higher frequency, i.e., 200 Hz,

(see Fig. 1(c),(f)). Finally, for y2[n] where the clean and noise signals present similar average spectral

characteristics the medium- and long-term average performance of the DTEO and DSEO is comparable,

as shown in Fig. 1(b) and (e).

For very-short term analysis (T<5 ms), the DTEO performance is always superior to that of DSEO,

regardless of the signals’ spectral content, due to the transient effects outlined in Section III-B. Also, the

medium-term behavior (up to 100 ms approximately) of the DTEO and DSEO is similar to their long-term

behavior, as predicted in Section III-A. Finally, the DTEO and DSEO performance is not affected much

by the phase of the signal and noise, as can be seen by a direct comparison of Fig. 1(a),(d), 1(b),(e) and

1(c),(f).
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Fig. 1. DTEO and DSEO RMS normalized deviations DT d, DSd, as a function of window length T (in ms) for the signals:

(a) y1[n], (b) y2[n] and (c) y3[n]. Same for random phase sinusoids in (d)-(f). Deviations shown in all plots are averaged over

1000 instances of the random signals yj [n]. The SNR level is 0 dB. Both x- and y-axis are in log-scale.
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DTEO and DSEO Normalized Deviation

y1 = x1 + v y2 = x2 + v y3 = x3 + v

rms std rms std rms std

Ψ-Operator 2.46 0.27 1.14 0.13 0.68 0.08

Theoretical Value 2.34 1.04 0.58

S-Operator 1.11 0.12 1.10 0.11 1.11 0.12

Theoretical Value 1.00 1.00 1.00

TABLE I

DTEO AND DSEO RMS NORMALIZED DEVIATIONS (AND STANDARD DEVIATION OF ESTIMATE) COMPUTED OVER 1000

INSTANCES OF THE RANDOM SIGNALS y1 , y2 AND y3 . THE SNR LEVEL IS 0 dB AND THE ANALYSIS WINDOW LENGTH IS

500 ms.

B. Short-Time Energy of Signal Derivatives

Herein, we investigate the DTEO and DSEO performance when higher-order derivatives y
(`)
j [n] of the

input signals are employed, where j = 1, 2, 3 are the indices of the noisy sinusoids, as defined in the

previous section, and ` = 1, 2, 3 are the first, second and third-order derivatives of those signals. Our goal

is to verify the theoretical results in (32) and (34), and to compare with the experimentally computed

DTEO and DSEO deviations. In the following experiments, first-order derivatives are approximated by

one-sample differences. Higher-order derivatives of order ` are iteratively estimated using one-sample

differences of the (`− 1)-order derivative.

The experimental setup and result presentation is identical to that of Section VII-A, but here signal

derivatives are used. The DTEO and DSEO normalized deviations are computed first theoretically using

(32), (34), and then experimentally by averaging over 1000 instances of the noisy input signals. The root

mean square (rms) and standard deviation (std) of these deviations (along with the theoretical values)

are shown in Table II for a T = 500 ms window length. Overall, there is a good agreement between the

theoretical and experimental results.

The RMS normalized deviations of the DSEO and the DTEO applied to the signal derivatives y
(`)
j [n] are

shown in Fig. 2, as a function of the averaging window length T . Again, all results are in agreement with

the theory. The performance of the DSEO applied to the `th signal derivative and that of the DTEO applied
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Fig. 2. DTEO and DSEO RMS normalized deviations DT d, DSd, as a function of window length T (in ms) for the signals:

(a) y
(`)
1 [n], (b) y

(`)
2 [n] and (c) y

(`)
3 [n], for ` = 1, 2, 3. Deviations shown in all plots are averaged over 1000 instances of the

random signals yj [n]. The SNR level is 0 dB. Both x- and y-axis are in log-scale (y-axis range is different in (a)-(c) to enhance

readability).

to the (`−1)th derivative are very similar for both medium-term10 and, especially, long-term, as predicted

by theory (see also Table II). For the case of y
(`)
3 [n] shown in Fig. 2(c), lower normalized deviations

are achieved when high-order derivatives are used, because the signal energy content is concentrated at

higher frequencies than the corresponding noise content. The opposite is true for signal y
(`)
1 [n] shown

in Fig. 2(a). In general, the normalized deviation of DTEO and DSEO applied to signal derivatives is

governed by the amount of frequency weighting as theoretically predicted by (32) and (34).

VIII. EXPERIMENTS WITH SPEECH SIGNALS

Next, the relative performance of the DTEO and DSEO is evaluated for a realistic speech processing

application. The time-frequency distribution of speech signals, in the presence of different types of

additive noise, is estimated and the corresponding energy deviations are computed. The proposed filterbank

analysis and short-term energy estimation is typically performed by the front-end of a speech recognition

system. Our goal is to verify, via these experiments, the theoretical results and to provide further insight

in the relative performance of DTEO and DSEO for speech processing applications.

The RMS DTEO and DSEO deviations, defined in (45) and (50), can be interpreted as the inverse

Signal to Noise Ratio (SNR) where the estimation error is considered as the “noise” and the desired

10The very short-term performance of the DTEO and DSEO is not shown in the figure to avoid clutter. As expected, the

DTEO significantly outperforms the DSEO for T < 5 ms.
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DTEO and DSEO Normalized Deviation

(x1 + v)(`) (x2 + v)(`) (x3 + v)(`)

rms std rms std rms std

` = 1

Ψ-Operator 6.28 0.68 1.31 0.14 0.44 0.05

Theoretical Value 6.22 1.23 0.38

S-Operator 2.56 0.28 1.15 0.13 0.66 0.07

Theoretical Value 2.34 1.04 0.58

` = 2

Ψ-Operator 17.41 1.92 1.63 0.18 0.32 0.04

Theoretical Value 18.29 1.61 0.29

S-Operator 6.53 0.72 1.32 0.15 0.43 0.05

Theoretical Value 6.22 1.23 0.38

` = 3

Ψ-Operator 52.14 5.75 2.19 0.25 0.24 0.03

Theoretical Value 57.50 2.24 0.22

S-Operator 18.42 2.03 1.67 0.19 0.31 0.04

Theoretical Value 18.29 1.61 0.29

TABLE II

DTEO AND DSEO RMS NORMALIZED DEVIATIONS (AND STANDARD DEVIATION OF ESTIMATE) COMPUTED OVER 1000

INSTANCES OF THE FIRST, SECOND AND THIRD ORDER DERIVATIVES OF THE RANDOM SIGNALS y1 , y2 AND y3 . THE SNR

LEVEL IS 0 dB AND THE ANALYSIS WINDOW LENGTH IS 500 ms.

energy term as the “signal”. Specifically, we define SNRS , −10 log(DSd) as the SNR in dBs for the

DSEO and similarly SNRT , −10 log(DT d) for DTEO. Herein, all results are presented in terms of the

log distortion difference between the DSEO and DTEO, i.e., SNRS − SNRT in dBs. Negative distortion

difference values indicate better DTEO performance, and vice versa for DSEO.

The DTEO and DSEO values are estimated over speech signals corrupted by various types of additive

noise. For this purpose, the NOISEX-92 noise database is used, containing ten typical noise samples,

each with different spectral characteristics [33]. These noise signals are down-sampled to 16 kHz and
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added to the speech samples11 extracted from the TIMIT database, while keeping the global average

Signal-to-Noise Ratio (SNR) fixed at SNR = 5 dB12. The clean speech is used as the reference signal

for computing the normalized deviation and the log distortion difference.

In this experiment, only five, i.e., babble, buccaneer 1, volvo, factory 1 and white noise types are

examined. Specifically: (i) babble noise is acquired when 100 people are recorded speaking in a canteen

where individual voices are slightly audible [33], (ii) buccaneer noise is mainly a low frequency type

of noise with the addition of a high frequency component, (iii) volvo noise presents mainly a lowpass

structure and can be considered stationary, (iv) factory noise was recorded near plate-cutting and electrical

welding equipment [33] and it is non-stationary (e.g., contains hammer blows), (v) white noise exhibits

equal energy per frequency bin. These noise signals are added to 1000 different instances of the phonemes

/aa/, /ae/, /sh/ and /f/, all extracted from the TIMIT database.

To simulate the filterbanks commonly-used in speech processing applications, a linearly-spaced, Gabor

filterbank with 25 filters and fixed 3 dB-bandwidth overlap percentage of 50% is used [6], [8], [28]. Short-

term DTEO and DSEO energy estimates are computed for each frequency bin using analysis frames with

duration of 30 ms (updated every 10 ms).

The median13 log distortion difference between the DTEO and DSEO time-frequency estimates is

presented in Table III for two voiced (/aa/, /ae/) and two unvoiced phonemes (/sh/, /f/). The median

is computed over 1000 instances of each phone, both in time (over all frames) and frequency (over

all frequency bins). Overall, the DTEO significantly outperforms the DSEO for all noise types with the

exception of white noise. The performance gap is larger for lowpass volvo noise and for the phonemes /sh/,

/f/. In general, the DTEO outperforms the DSEO when the spectral tilt14 of the noise is smaller compared

to that of the signal, e.g., for lowpass volvo noise or for fricative sounds (where the signal’s spectral tilt

is rising up to approx. 3 kHz). This observation is consistent with (45), (50), i.e., DTEO is superior when

11The noise signals have a duration of approximately 235 sec, so a portion of the noise signal is randomly selected and added

to each speech signal.
12The SNR value is estimated as the mean ratio of the speech over the noise signal energies per frame. Then, the noise signals

are scaled so that the global mean SNR is 5 dB. Therefore, this value refers to the wide-band speech signal and suggests that

the SNR level is, on average, 5 dBs.
13We use the median instead of the root mean square estimate here to get rid of outliers. For certain time-frequency bins, the

energy of the signal is too low resulting in very large normalized deviation values.
14The spectral tilt is defined as the slope of a line that best fits the log power spectrum of the input signal, more details can

be found in [10].
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Median Log Distortion Difference Between DSEO and DTEO (in dB)

for Noisy Speech Phonemes

Noise Type

Babble Buccaneer 1 Volvo Factory 1 White

Phoneme

/aa/ -0.06 -0.03 -0.44 -0.06 0.05

/ae/ -0.04 -0.02 -0.43 -0.06 0.05

/sh/ -0.17 -0.15 -0.82 -0.18 -0.05

/f/ -0.13 -0.10 -0.81 -0.14 0.001

TABLE III

MEDIAN LOG DISTORTION DIFFERENCE BETWEEN THE DSEO AND DTEO ESTIMATES COMPUTED OVER ALL SPEECH

FRAMES AND FREQUENCY BANDS FOR 1000 INSTANCES (PER PHONEME). RESULTS ARE SHOWN FOR FIVE TYPES OF

NOISE AND FOUR TYPES OF PHONEMES. SNR IS 5 dB.

the noise energy is concentrated in lower frequencies than those of the signal. Approximation errors and

transient effects also affect performance, as discussed next.

In Fig. 3, the median log distortion difference is shown as a function of the filter index (or equivalently

the signal’s carrier frequencies) for phonemes /aa/ and /sh/, and for (a) babble and (b) white noise. Two

additional conclusions about the relative performance of DTEO and DSEO can be drawn from Fig. 3,

namely: (i) The DSEO performs significantly worse than the DTEO for the first few filters. This is due

to additional transient error terms of DSEO. As discussed in Section III, the magnitude of the transient

terms is inversely proportional to frequency and, thus, the transient terms take large values for the first

few filters. (ii) The discrete-time approximation error of DTEO becomes large at high frequencies, as

discussed in Section VI. This explains the worse performance of DTEO for the last few filters. Overall,

the experimental results are in agreement with the theory and provide important intuition about the DTEO

and DSEO performance for speech processing applications.

IX. CONCLUSIONS

In this paper, the properties of the Teager-Kaiser and the squared energy operators in the presence of

additive noise are examined as a function of the short-term averaging window length. This analysis covers

both the continuous- and discrete-time domains. Furthermore, the robustness of the energy estimation
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Fig. 3. Median of the log distortion differences between the DSEO and DTEO as a function of filter index for different noise

types: (a) babble, and (b) white. The global signal SNR is equal to 5 dB. The median is computed over 1000 instances of the

phonemes /aa/ and /sh/. The filterbank consists of 25 Gabor filters, linearly spaced with fixed overlap. Negative values indicate

better DTEO performance.

process is investigated when the TEO and SEO are applied to the derivatives (or differences) of the original

signal. Overall, we have concluded that the following factors affect the TEO and SEO performance as

short-term energy estimators: (i) The relative differences between the spectral shape of the signal and

noise, or more specifically, the ratio of the second spectral centroid of the noise over that of the signal. In

general, the TEO outperforms the SEO when the noise is more “lowpass” than the signal, and vice versa.

(ii) The duration of the analysis window: the TEO outperforms the SEO for short analysis windows

(<5 ms). For all other cases, the clean and noise spectra must be considered. (iii) The magnitude of

the short- and medium-term transient error terms is inversely proportional to the signals’ frequency

content: transient phenomena are more prominent for signals with low frequency components, especially

for the SEO that contains two additional transient terms. (iv) The sampling frequency: the discrete-time

approximation error of the DTEO increases when the center (average) signal and noise frequencies move

towards the Nyquist frequency. In addition, we have shown that more robust energy estimates may be

obtained by applying the operators to the high-order derivatives of the signal15 for noise with “lowpass”

spectral characteristics (compared to those of the signal). In this context, the long-term properties of the

SEO applied to the `th signal derivative are equivalent to those of the TEO applied to the (`−1)th signal

derivative (baring DTEO approximation errors).

The results are experimentally verified on synthetic and real speech signals. Based on preliminary results

15The estimated energy is weighted by the frequency, an unwanted side-effect. Also, approximation errors creep up in discrete-

time implementations.
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using such signals we can state that, in general, the TEO appears to be more robust than the SEO for

speech-related applications. The results in this paper can be exploited for a variety of signal processing

applications where short-term energy estimation in noise is required, such as, telecommunication and

image processing applications. In general, for applications where the noise spectral characteristics are

known (and differ from those of the signal), a short-time energy estimator exhibiting optimal performance

can be selected based on the results of this paper.

APPENDIX I

SHORT-TERM TEAGER-KAISER AND SQUARED ENERGY ESTIMATION FOR SINUSOIDS IN ADDITIVE

NOISE

In this section, the short-term average energy of a sinusoid x(t) = a · cos(ωxt + θx) corrupted by

additive noise v(t) is computed. The energy of the noisy signal y(t) = x(t)+ v(t) is estimated using the

squared energy and Teager-Kaiser operators over a time window of duration T . The short-time average

of the TEO <Ψ[y]> is

<Ψ[y]>=
1
T

[∫ T

0
Ψ[x]dt +

∫ T

0
Ψ[v]dt +

∫ T

0
Ψcross[x, v]dt

]

Given that <Ψ[x]>= (aωx)2, and based on (10)

<Ψ[v]>=
1
T

∫ T

0
Ψ[v]dt =

1
T

∑

i

(biωi)
2
∫ T

0
dt+

1
2T

∫ T

0

∑

i

∑

i6=j

bibjωi(ωi + ωj) cos(φi − φj)dt+

1
2T

∫ T

0

∑

i

∑

i 6=j

bibjωi(ωi − ωj) cos(φi + φj)dt (56)

Let us define

Sij = sin [(ωi + ωj)T + (θi + θj)]− sin (θi + θj) (57)

Dij = sin [(ωi − ωj)T + (θi − θj)]− sin (θi − θj) (58)

then the short-time average of the noise is

<Ψ[v]>=
1
T

∫ T

0
Ψ[v]dt =

∑

i

(biωi)
2 +

∑

i

∑

i 6=j

bibj

2T
ωi

(
ωi − ωj

ωi + ωj
Sij +

ωi + ωj

ωi − ωj
Dij

)
(59)
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Similarly, the short-time average of the TEO cross-terms is

<Ψcross[x, v]>=
1
T

∫ T

0
Ψcross[x, v]dt =

∑

i

abi

2T

(
(ωx − ωi)2

ωx + ωi
Sxi +

(ωx + ωi)2

ωx − ωi
Dxi

)
(60)

where Sxi, Dxi are defined as in (57), (58). The normalized deviation DT defined in (15), is given by

DT (y) =
<Ψ[v]> + <Ψcross[x, v]>

<Ψ[x]>

Similarly for the SEO,

<S[y]>=<Sd[x]> + <Se[x]> + <S[v]> + <Scross[x, v]>

From (17)-(19),

<Sd[x]>=
1
T

∫ T

0

1
2
a2dt =

a2

2
(61)

<Se[x]>=
1
T

∫ T

0

1
2
a2 cos(2φx)dt =

a2

4Tωx
Sxx (62)

<S[v]>=
1

2T

∑

i

b2
i

∫ T

o
(1 + cos(2φi)) dt =

=
∑

i

b2
i

2
+

∑

i

b2
i

4Tωi
Sii (63)

<Scross[x, v]>=
∑

i

abi

T

(
Sxi

ωx + ωi
+

Dxi

ωx − ωi

)
+

∑

i

∑

j 6=i

bibj

2T

(
Sij

ωi + ωj
+

Dij

ωi − ωj

)
(64)

where Sxx, Sii, Sxi are defined as in (57), and Dxi is defined as in (58).

From (21), the normalized deviation DS is given by

DS(y) =
<Se[x]> + <S[v]> + <Scross[x, v]>

<Sd[x]>

The deviations DT and DS contain both lowpass and highpass terms, e.g., Dij and Sij , correspond-

ingly. There is a direct correspondence between the TEO and SEO error terms, however, the SEO has

two additional highpass error terms containing the quantities Sxx and Sii. In addition, both the desired

and error terms of TEO are multiplied by additional frequency squared terms (compared to the SEO),

e.g., ω2
x, (ωx ± ωi)

2. The additional highpass terms in SEO result is significantly higher error compared

to the TEO for very short-term energy estimation.
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All TEO and SEO error terms contain the 1/T multiplicative term, i.e., the magnitude of both lowpass

and highpass transient phenomena is inversely proportional to the analysis window length T . Thus, as

the analysis window length T increases, the RMS normalized deviations DT and DS converge to their

long-term averaging values, namely,
∑

i (biωi)2

(aωx)2 , and
∑

i b2
i

a2 , respectively.

APPENDIX II

MEAN SQUARE ENERGY ESTIMATION ERROR FOR RANDOM PHASE SINUSOIDS IN ADDITIVE NOISE

In this section, both x(t) = a · cos(ωxt + θx) and v(t) =
∑

i bi cos(ωit + θi) are assumed random

signals with θx, θi being independent random variables uniformly distributed over the interval [−π, π].

Next, the expected values of the squared normalized TEO and SEO deviations, i.e., E{DT 2} and E{DS2}
respectively, are computed.

Given i.i.d random variables θi, θj uniformly distributed in [−π, π], the random variables θi + θj ,

θi − θj are also i.i.d. and follow the symmetric triangular distribution in [−2π, 2π]. It follows that the

random variables Sij , Dij defined in (57), (58) exhibit the properties

E{Sij} = 0 and E(Dij) = 0 (65)

E{SijSkl} =





1− cos[(ωi + ωj)T ], if i = k,j = l

0 otherwise
(66)

E{DijDkl} =





1− cos[(ωi − ωj)T ], if i = k,j = l

0 otherwise
(67)

E{SijDkl} = 0 (68)

for any i.i.d. random variables θi, θj , θk, θl, uniformly distributed in [−π, π].

Based on (65)-(68), the mean square normalized deviation of the TEO is computed16,

E{DT 2(y)} =
E{<Ψ[v]>2 + <Ψcross[x, v]>2}

<Ψ[x]>2

because the expected value of the mean square error product term <Ψ[v]><Ψcross[x, v]> is zero, and

the denominator does not depend on the (random) phase. The expected value of the first term is

E{<Ψ[v]>2} =

(∑

i

(biωi)
2

)2

+
∑

i

∑

j 6=i

b2
i b

2
jω

2
i

4T 2
·

·



(
ω−ij
ω+

ij

)2

(1− cos(ω+
ijT )) +

(
ω+

ij

ω−ij

)2

(1− cos(ω−ijT ))




16The numerator of E{DT 2(y)} is the mean square error.
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and, similarly, for the second term

E{<Ψcross[x, v]>2} =
∑

i

a2b2
i

4T 2
.

.

[(
ω−xi

)4

(
ω+

xi

)2 (1− cos(ω+
xiT )) +

(
ω+

xi

)4

(
ω−xi

)2 (1− cos(ω−xiT ))

]

where we have defined ω+
ij = ωi + ωj , ω−ij = ωi − ωj to simplify notation.

The mean square normalized deviation of the SEO is

E{DS2(y)} =
E{<Se[x]>2}+ <S[v]>2 + <Scross[x, v]>2}

<Sd[x]>2

because the expected value of all product terms is equal to zero, and the denominator does not depend

on the phase. Based on (65)-(68), the three terms in the numerator are equal to

E{<Se[x]>2} =
a4

16T 2ω2
x

(1− cos(2ωxT ))

E{<S[v]>2} =

(∑

i

b2
i

2

)2

+
∑

i

b4
i

16T 2ω2
i

(1− cos(2ωiT ))

E{<Scross[x, v]>2} =
∑

i

a2b2
i

T 2

[
1− cos(ω+

xiT )
(ω+

xi)2
+

1− cos(ω−xiT )
(ω−xi)2

]
+

∑

i

∑

j 6=i

b2
i b

2
j

4T 2

[
1− cos(ω+

ijT )

(ω+
ij)2

+
1− cos(ω−ijT )

(ω−ij)2

]

The expected values of the desired TEO and SEO terms do not depend on the random phases and are

given by

E{<Ψ[x] >2} =<Ψ[x]>2= (aωx)4

and

E{<Sd[x] >2} =<Sd[x]>2=
a4

4

The transient error terms of the SEO and TEO can be grouped in two categories, i.e., those that

contain sums of frequencies (1 − cos(2ωiT )), (1 − cos(2ωxT )), (1 − cos(ω+
ijT )) and (1 − cos(ω+

xiT )),

that dominate for very small averaging windows T , and those that contain differences of frequencies

(1− cos(ω−ijT )), (1− cos(ω−xiT )) and dominate for medium-size averaging windows. The two additional

terms in E{DS2(y)}, namely, (1− cos(2ωiT )), (1− cos(2ωxT )), are the cause of the poor performance

of the SEO for very small averaging windows T . Finally, the transient terms of the mean square error

decrease as 1/T 2 for both the TEO and the SEO.
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APPENDIX III

ESTIMATING DTEO AND DSEO FOR SIGNAL DERIVATIVES

Using the approximation

x(`) ≈ a(t) (ω(t))` cos
(
φx(t) + `

π

2

)

proposed in [3], where x(t) is defined in (4) and ` = 0, 1, . . . as in (30), yields

Ψ[x(`)] =
(
x(`+1)

)2
− x(`)x(`+2) ≈

≈ a2ω2`+2 sin2
(
φ(t) + `

π

2

)
+ a2ω2`+2 cos2

(
φ(t) + `

π

2

)

Thus

Ψ[x(`)] ≈ a2ω2(`+1) (69)

Similarly, for the SEO operator we have

S[x(`)] = a2ω2` cos2 φ ⇒

S[x(`)] =
1
2
a2ω2` +

1
2
a2ω2` cos(2φ) (70)

REFERENCES

[1] R. G. Baraniuk, “Beyond Time-Frequency Analysis: Energy Densities in One and Many Dimensions”, IEEE Trans. Signal

Process., vol. 46, no. 9, pp. 2305-2314, Sept. 1998.

[2] A. C. Bovik, J. P. Havlicek, M. D. Desai and D. S. Harding, “Limits on Discrete Modulated Signals”, IEEE Trans. Signal

Process., vol. 45, no. 4, pp. 867-879, Apr. 1997.

[3] A. C. Bovik, P. Maragos and T. F. Quatieri, “AM-FM Energy Detection and Separation in Noise Using Multiband Energy

Operators”, IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3245-3265, Dec. 1993.

[4] B. Carlsson, A. Ahlen and M. Sternad, “Optimal Differentiation Based on Stochastic Signal Models”, IEEE Trans. Signal

Process., vol. 39, no. 2, pp. 341-353, Feb. 1991.

[5] L. Cohen, “Time-Frequency Distributions - A Review”, Proc. IEEE, vol. 77, no. 7, pp. 941-981, July 1989.

[6] D. Dimitriadis and P. Maragos, “Continuous Energy Demodulation Methods and Application to Speech Analysis”, Speech

Commun., vol. 48, no. 7, pp. 819-837, July 2006.

[7] D. Dimitriadis, P. Maragos and A. Potamianos, “Robust AM-FM Features for Speech Recognition”, IEEE Signal Process.

Lett., vol. 12, no. 9, pp. 621-624, Sept. 2005.

[8] D. Dimitriadis, P. Maragos and A. Potamianos, “Auditory Teager Energy Cepstrum Coefficients for Robust Speech

Recognition”, in Proc. 9th Eur. Conf. Speech Commun. Technol., 2005, Lisbon, Portugal.

[9] J. Fang and L. E. Atlas, “Quadratic Detectors for Energy Estimation”, IEEE Trans. Signal Process., vol. 43, no. 11, pp.

2582-2594, Nov. 1995.

[10] G. Fant , “The Voice Source in Connected Speech”, Speech Commun., vol. 22, no. 2-3, pp. 125-139, Aug. 1997.

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 29

[11] L. B. Fertig and J. H. McClellan, “Instantaneous Frequency Estimation Using Linear Prediction With Comparisons to the

DESAs”, IEEE Signal Process. Lett., vol. 3, pp. 54-56, Feb. 1996.

[12] P. Flajoleta and R. Sedgewick, “Mellin Transforms and Asymptotics: Finite Differences and Rice’s Integrals”, Theoretical

Computer Science, vol. 144, no. 1-2, pp. 101-124, June 1995.

[13] S. Gazor and W. Zhang, “Speech Probability Distribution”, IEEE Signal Process. Lett., vol. 10, pp. 204-207, July 2003.

[14] J. F. Kaiser, “Some Observations on Vocal Tract Operation from a Fluid Flow Point of View”, Vocal Fold Physiology:

Bio-mechanics, Acoustics and Phonatory Control, I. R. Titze and R. C. Scherer (Eds.), Denver Center for Performing Arts,

Denver, CO, pp. 358-386, 1983.

[15] J. F. Kaiser, “On a Simple Algorithm to Calculate the ‘Energy’ of a Signal”, in Proc. IEEE Int. Conf. Acoust., Speech,

and Signal Process., 1990, Albuquerque, NM, pp. 381-384.

[16] I. Kokkinos, G. Evangelopoulos and P. Maragos,“Texture Analysis and Segmentation Using Modulation Features, Generative

Models and Weighted Curve Evolution”, IEEE Trans. Pattern Anal. and Mach. Intell., vol. 31, no. 1, pp. 142-157, Jan.

2009.

[17] S. Lu and P. C. Doerschuk, “Nonlinear Modeling and Processing of Speech Based on Sums of AM-FM Formant Models”,

IEEE Trans. Signal Process., vol. 44, no. 4, pp. 773-782, Apr. 1996.

[18] P. Maragos and A. C. Bovik, “Image Demodulation Using Multidimensional Energy Separation”, J. Opt. Soc. Amer., vol.

12, no. 9, pp. 1867-1876, 1995.

[19] P. Maragos and A. Potamianos, “Higher Order Differential Energy Operators”, IEEE Signal Process. Lett., vol. 2, no. 8,

pp. 152-154, Aug. 1995.

[20] P. Maragos, J. F. Kaiser and T. F. Quatieri, “On Amplitude and Frequency Demodulation Using Energy Operators”, IEEE

Trans. Signal Process., vol. 41, no. 4, pp. 1532-1550, Apr. 1993.

[21] P. Maragos, J. F. Kaiser and T. F. Quatieri, “Energy Separation in Signal Modulations with Application to Speech Analysis”,

IEEE Trans. Signal Process., vol. 41, no. 10, pp. 3024-3051, Oct. 1993.

[22] A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal Processing”, 2nd Edition, Prentice Hall: Upper Saddle River,

1999.

[23] K. K. Paliwal, “Spectral Subband Centroid Features for Speech Recognition”, in Proc. IEEE Int. Conf. Acoust., Speech,

and Signal Process., 1998, Seattle, WA, pp. 617-620.

[24] A. Papoulis, “Probability, Random Variables and Stochastic Processes”, 3rd Edition, McGraw-Hill Inc., 1991.

[25] J. W. Pitton, L. E. Atlas and P. J. Loughlin, “Applications of Positive Time-Frequency Distributions to Speech Processing”,

IEEE Trans. Speech and Audio Process., vol. 2, no. 4, pp. 554-566, Oct. 1994.

[26] A. Potamianos and P. Maragos, “A Comparison of the Energy Operator and the Hilbert Transform Approach to Signal and

Speech Demodulation”, Signal Process., vol. 37, no. 1, pp. 95-120, May 1994.

[27] A. Potamianos and P. Maragos, “Speech Formant Frequency and Bandwidth Tracking Using Multiband Energy Demodu-

lation”, J. Acoust. Soc. Amer., vol. 99, no. 6, pp. 3795-3806, June 1996.

[28] A. Potamianos and P. Maragos, “Speech Analysis and Synthesis Using an AM-FM Modulation Model”, Speech Commun.,

vol. 28, no. 3, pp. 195-209, July 1999.

[29] A. Potamianos and P. Maragos, “Time-Frequency Distributions for Automatic Speech Recognition”, IEEE Trans. Speech

and Audio Process., vol. 9, no. 3, pp. 196-200, Mar. 2001.

[30] B. Santhanam and P. Maragos,“Multicomponent AM-FM Demodulation via Periodicity-Based Algebraic Separation and

Energy-Based Demodulation”, IEEE Trans. Commun., vol. 48, no. 3, pp. 473-490, Mar. 2000.

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 30

[31] C. S. Ramalingam, “On the Equivalence of DESA-1a and Prony’s Method When the Signal is a Sinusoid”, IEEE Signal

Process. Lett., vol. 3, no. 5, pp. 141-143, May 1996.

[32] H. M. Teager, “Some Observations on Oral Flow During Phonation”, IEEE Trans. Acoustics, Speech and Signal Process.,

vol. 28, no. 5, pp. 599-601, Oct. 1980.

[33] A. Varga and H. J. M. Steeneken, “Assessment for Automatic Speech Recognition: II. NOISEX-92: A Database and an

Experiment to Study the Effect of Additive Noise on Speech Recognition Systems”, Speech Commun., vol. 12, no. 3, pp.

247-251, July 1993.

Dimitrios Dimitriadis (S’99-M’06) received the Diploma degree in ECE and the Ph.D degree both from

the National Technical University of Athens, Athens, Greece in 1999 and 2005, respectively.

Since 2005 he has been a postdoctoral Research Associate at the National Technical University of

Athens, participating in national and European research projects in the areas of audio and speech processing

and recognition. From 2001 to 2002 he was intern at the Multimedia Communications Lab at Bell Labs,

Lucent Technologies, Murray Hill, NJ.

His current research interests include speech processing, analysis, synthesis and recognition, multi-modal systems, nonlinear

and multi-sensor signal processing.

Dr. Dimitriadis has authored or co-authored over fifteen papers in professional journals and conferences. He is a member of

the IEEE Signal Processing Society (SPS) since 1999 and he has served as a reviewer for the IEEE SPS.

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 31

Alexandros Potamianos (M’92) received the Diploma in ECE from the National Technical University of

Athens, Greece in 1990. He received the M.S and Ph.D. degrees in Engineering Sciences from Harvard

University, Cambridge, MA, USA in 1991 and 1995, respectively.

From 1991 to June 1993 he was a research assistant at the Harvard Robotics Lab, Harvard University.

From 1993 to 1995 he was a research assistant at the Digital Signal Processing Lab at Georgia Tech.

From 1995 to 1999 he was a Senior Technical Staff Member at the Speech and Image Processing Lab,

AT&T Shannon Labs, Florham Park, NJ. From 1999 to 2002 he was a Technical Staff Member and Technical Supervisor at the

Multimedia Communications Lab at Bell Labs, Lucent Technologies, Murray Hill, NJ. From 1999 to 2001 he was an adjunct

Assistant Professor at the Department of Electrical Engineering of Columbia University, New York, NY. In the spring of 2003,

he joined the Department of Electronics and Computer Engineering at the Technical University of Crete, Chania, Greece as an

associate professor.

His current research interests include speech processing, analysis, synthesis and recognition, dialog and multi-modal systems,

nonlinear signal processing, natural language understanding, artificial intelligence and multimodal child-computer interaction.

Prof. Potamianos has authored or co-authored over eighty papers in professional journals and conferences. He is the co-author

of the paper “Creating conversational interfaces for children” that received a 2005 IEEE Signal Processing Society Best Paper

Award; the co-editor of the book “Multimodal Processing and Interaction: Audio, Video, Text”. He holds four patents. He is

a member of the IEEE Signal Processing Society since 1992 and he is currently serving his second term at the IEEE Speech

Technical Committee.

Petros Maragos (S’81-M’85-SM’91-F’96) received the EE Diploma from the National Technical Uni-

versity of Athens in 1980, and the M.Sc.E.E. and Ph.D. from Georgia Tech, Atlanta, USA, in 1982 and

1985.

During 1985-1993 he worked as EE professor at the Division of Applied Sciences at Harvard University.

In 1993 he joined the ECE faculty at Georgia Tech. During parts of 1996-1998 he was on sabbatical

working as director of research at the Institute for Language and Speech Processing in Athens. Since

1998 he has been working as ECE professor at NTUA. His research and teaching interests include signal processing, systems

theory, pattern recognition, and their applications to image processing and computer vision, speech and language processing,

multimedia, and robotics.

His research has received: a 1987 NSF Presidential Young Investigator Award; a 1988 IEEE SP Society’s Young Author

Paper Award; a 1994 IEEE SP Senior Award; the 1995 IEEE W.R.G. Baker Prize Award; a 1996 Pattern Recognition Society’s

Honorable Mention Award; the 2007 EURASIP Technical Achievements Award.

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 32

CONTENTS

I Introduction 2

II Performance of Energy Operators in Noise 4

II-A Signal and Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II-B TEO-Based Noisy Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 5

II-C SEO-Based Noisy Energy Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 7

III Medium-Term and Short-Time Properties of Energy Operators 8

III-A Medium-Term Time Average Properties . . . . . . . . . . . . . . . . . . . . . . . . 9

III-B Short-Time Average Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IV Applying Energy Operators to Signal Derivatives 10

V Performance of Discrete-Time Energy Operators in Noise 11

VI Discrete Time TEO Approximation Error 14

VII Experiments with Synthetic Signals 15

VII-A Short-Time Energy of Noisy Sinusoidal Signals . . . . . . . . . . . . . . . . . . . . 16

VII-B Short-Time Energy of Signal Derivatives . . . . . . . . . . . . . . . . . . . . . . . 18

VIII Experiments with Speech Signals 19

IX Conclusions 22

Appendix I: Short-Term Teager-Kaiser and Squared Energy Estimation for Sinusoids in Ad-

ditive Noise 24

Appendix II: Mean Square Energy Estimation Error for Random Phase Sinusoids in Additive

Noise 26

Appendix III: Estimating DTEO and DSEO for Signal Derivatives 28

References 28

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 33

Biographies 30

Dimitrios Dimitriadis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Alexandros Potamianos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Petros Maragos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 34

LIST OF TABLES

I DTEO and DSEO RMS Normalized Deviations (and Standard Deviation of Estimate) Com-

puted over 1000 Instances of the Random Signals y1, y2 and y3. The SNR level is 0 dB

and the Analysis Window Length is 500 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

II DTEO and DSEO RMS Normalized Deviations (and Standard Deviation of Estimate) Com-

puted over 1000 Instances of the First, Second and Third Order Derivatives of the Random

Signals y1, y2 and y3. The SNR level is 0 dB and the Analysis Window Length is 500 ms. 20

III Median Log Distortion Difference Between the DSEO and DTEO Estimates computed over

all Speech Frames and Frequency Bands for 1000 Instances (per Phoneme). Results are

Shown for Five Types of Noise and Four Types of Phonemes. SNR is 5 dB. . . . . . . . . 22

February 23, 2009 DRAFT



TRANS. ON SIGNAL PROCESSING, VOL.X, NO.XX 35

LIST OF FIGURES

1 DTEO and DSEO RMS normalized deviations DT d, DSd, as a function of window length

T (in ms) for the signals: (a) y1[n], (b) y2[n] and (c) y3[n]. Same for random phase sinusoids

in (d)-(f). Deviations shown in all plots are averaged over 1000 instances of the random

signals yj [n]. The SNR level is 0 dB. Both x- and y-axis are in log-scale. . . . . . . . . . 17

2 DTEO and DSEO RMS normalized deviations DT d, DSd, as a function of window length

T (in ms) for the signals: (a) y
(`)
1 [n], (b) y

(`)
2 [n] and (c) y

(`)
3 [n], for ` = 1, 2, 3. Deviations

shown in all plots are averaged over 1000 instances of the random signals yj [n]. The SNR

level is 0 dB. Both x- and y-axis are in log-scale (y-axis range is different in (a)-(c) to

enhance readability). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Median of the log distortion differences between the DSEO and DTEO as a function of filter

index for different noise types: (a) babble, and (b) white. The global signal SNR is equal

to 5 dB. The median is computed over 1000 instances of the phonemes /aa/ and /sh/. The

filterbank consists of 25 Gabor filters, linearly spaced with fixed overlap. Negative values

indicate better DTEO performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

February 23, 2009 DRAFT


