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Abstract— We present a frequency-domain technique based on
PARAllel FACtor (PARAFAC) analysis that performs multicha n-
nel Blind Source Separation (BSS) of convolutive speech mix-
tures. PARAFAC algorithms are combined with a dimensionality
reduction step to significantly reduce computational complexity.
The identifiability potential of PARAFAC is exploited to der ive a
BSS algorithm for the under-determined case (more speakers
than microphones), combining PARAFAC analysis with time-
varying Capon beamforming. Finally, a low-complexity adaptive
version of the BSS algorithm is proposed that can track changes
in the mixing environment. Extensive experiments with realistic
and measured data corroborate our claims, including the under-
determined case. Signal-to-Interference ratio improvements of up
to 6 dB are shown compared to state-of-the-art BSS algorithms,
at an order of magnitude lower computational complexity.

I. I NTRODUCTION

Blind Source Separation (BSS) aims to estimate multiple
source signals mixed through an unknown channel, using
only the observed signals captured by a set of sensors. There
are diverse potential applications of BSS in various areas,
including speech processing, telecommunications, biomedical
signal processing, analysis of astronomical data or satellite
images, etc. In this paper, we focus on BSS of speech signals
recorded in a reverberant environment. In this situation, mul-
tiple attenuated and delayed versions of each speaker signal
are captured by each microphone, which results in a problem
of blind separation of convolutive speech mixtures. This isa
key problem in applications such as teleconferencing or mo-
bile telephony, where multiple speaker separation or speaker-
background separation can be crucial for human intelligibility
and automatic speech recognition.

BSS techniques usually assume certain properties on the
sources or the mixing system and capitalize on a separation
criterion that imposes the same properties on their estimates.
In BSS of speech signals, a significant attribute that can
be exploited is the inherent non-stationarity of such signals.
Speech signals are in fact considered to be non-stationary
for durations greater than40 ms [1]. Several BSS algorithms
that exploit non-stationarity have been proposed in the simple
case of instantaneous linear mixtures, e.g., [2]. In the more
realistic case of convolutive linear mixtures, time-domain [3,
4] and frequency-domain [5–9] methods have been proposed.
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We refer to [10] for a categorization of existing convolutive
BSS methods (see also SectionII ).

Exploiting the non-stationary nature of speech signals, the
BSS problem can be solved via the use of Second-Order-
Statistics (SOS), assuming uncorrelated sources. Thus, the
problem reduces to estimation of the mixing matrix that
minimizes a measure of total cross-correlation. If the mixing
system is stationary, the solution can be obtained by con-
sidering multiple cross-correlation lags, which yields a Joint-
Approximate-Diagonalization (JAD) problem [11, 12]. Suchan
approach was proposed in, e.g., [13], for BSS of instantaneous
mixtures, and in, e.g., [5, 6, 8], for BSS of convolutive mix-
tures in the frequency domain. The main challenges towards
engineering pragmatic BSS algorithms for convolutive speech
mixtures in the frequency domain are the following:

i) Building a fast and robust separation algorithm that solves
the JAD problem for each frequency bin.

ii) Dealing with under-determined cases, i.e., when the
number of sources exceeds the number of microphones. This
entails identifiability issues and requires appropriate cross-talk
reduction techniques, which have not been properly addressed
to date in this context.

iii) Effectively dealing with the frequency-dependent per-
mutation and scaling ambiguity problems.

iv) Dealing with non-stationary mixing environments, i.e.,
solving the BSS problem adaptively.

In this paper, we propose original contributions for each
of these four challenges. First, we show that solving a JAD
problem for each frequency is equivalent to fitting a conju-
gate symmetricparallel factor (PARAFAC) model for each
frequency. PARAFAC is a powerful multilinear algebra tool
for tensor decomposition in a sum of rank-1 tensors. In this
sense, PARAFAC is one possible generalization of the matrix
SVD to higher-order tensors. PARAFAC was introduced in
[14] in 1970 and slowly found its way in various disciplines
such as Chemometrics and food technology [15], exploratory
data analysis [16], wireless communications and array pro-
cessing [17, 18], and BSS [19, 20]. In the context of this
paper, exploitation of the algebraic structure of the PARAFAC
model for each frequency allows a dimensionality-reduction
step before the separation stage. This results in a far lower
complexity than state-of-art JAD techniques [5, 6, 8], with
guaranteed convergence.

Next, we show that, unlike state-of-art JAD algorithms,
the strong uniqueness properties of PARAFAC allow us to
identify the mixing matrix transfer function in certain under-
determined cases. For the simpler case of instantaneous mix-
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tures, an analogous result was established in [20]. We propose
to build the de-mixing matrix by employing a time-varying
Capon beamforming-based cross-talk reduction technique,and
demonstrate good performance for under-determined cases.

The third contribution of this paper is a low-complexity
technique to deal with the frequency-dependent permutation
problem. Our method consists of clustering the (properly
scaled) estimated source profiles via thek-meansalgorithm,
after which the permutation matrices are estimated in a single
step, in a non-iterative way. This clustering strategy results in a
significant reduction of the complexity, compared to the fully
iterative techniques proposed in [8, 21, 22], without sacrificing
performance.

Finally, we derive an adaptive version of our batch blind
speech separation algorithm, based on one of the adaptive al-
gorithms that we have developed in [23] to track a PARAFAC
decomposition. This is important to track changes in the
acoustic environment (e.g., due to speaker movement), and it
also yields complexity savings as a side benefit - thus bringing
the overall solution closer to practice.

Preliminary results have appeared in conference form in
[24, 25]. This journal version incorporates i) a much faster
separation algorithm, ii) a novel permutation-matching algo-
rithm, iii) a technique to deal with the under-determined case,
iv) an adaptive version of the algorithm, and v) extensive
experiments.

This paper is organized as follows. In SectionII , we give
the general formulation of the frequency-domain BSS problem
in terms of JAD of a set of matrices for each frequency bin. In
SectionIII , we establish the link between the JAD formulation
and its equivalent PARAFAC reformulation and we report ex-
isting results concerning uniqueness of PARAFAC. In Section
IV, we explain our approach for batch computation of the
PARAFAC decomposition for each frequency bin. In Section
V, we explain how scaling and permutation ambiguities can
be corrected. In SectionVI , we address the under-determined
case and we show how a time-varying Capon beamforming
technique can be employed for cross-talk reduction. In Section
VII , we discuss an adaptive version of our batch algorithm.
SectionVIII reports numerical results, and SectionIX sum-
marizes our conclusions.

Notation.A third-order tensor of sizeI ×J ×K is denoted
by a calligraphic letterY, and its elements are denoted by
yi,j,k, i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . , K. A
bold-face capital letterY denotes a matrix and a bold-face
lower-case lettery a vector. The transpose, complex conjugate,
complex conjugate transpose and pseudo-inverse are denoted
by YT , Y∗, YH and Y†, respectively.‖Y‖F denotes the
Frobenius norm ofY. The Kronecker product is denoted
by ⊗. The Khatri-Rao product (or column-wise Kronecker
product) is denoted by⊙, i.e., [a1, . . . ,aI ] ⊙ [b1, . . . ,bI ] =
[a1 ⊗b1, . . . ,aI ⊗bI ]. TheP ×P identity matrix is denoted
by IP . E[·] denotes the expectation operator. We will also use
a Matlab-type notation for matrix sub-blocks, i.e.,[A]l:m,n:p

represents the matrix built after selection ofm − l + 1 rows
of A, from the lth to themth, andp − n + 1 columns ofA,
from the nth to thepth. [A]:,n:p is used to denote selection
of all rows and[A]l:m,: to denote selection of all columns.

Similarly, y(l : m) represents a selection ofm− l+1 samples
of the vectory, from thelth to themth.

II. PROBLEM STATEMENT

A. Data Model

Let us considerI mutually uncorrelated speaker signals
s(t) = [s1(t), . . . , sI(t)]

T captured byJ microphones and
denote byx(t) = [x1(t), . . . , xJ(t)]T the recorded mixtures.
The noise-free convolutive model is written as follows

x(t) = H ⋆ s(t) =

L−1
∑

l=0

H(l)s(t − l), (1)

where ⋆ is the linear convolution operator. TheJ × I ma-
trix H(l) represents the mixing system at time-lagl. Its
elementshj,i(l) are coefficients of the Room Impulse Re-
sponse (RIR) between sourcei and microphonej, modeled
as a Finite Impulse Response (FIR) filter.L denotes the
maximum (unknown) channel length. To estimate the sources
ŝ(t) = [ŝ1(t), . . . , ŝI(t)]

T , the objective is to find anI × J
approximate inverse-channel matrixW, such that

ŝ(t) = W ⋆ x(t) =

K−1
∑

k=0

W(k)x(t − k), (2)

whereK is the length of the inverse-channel impulse response.
To solve this problem, one can resort to a time-domain

approach or a frequency-domain approach. In time-domain
approaches,K should be chosen at least equal to the unknown
true channel orderL for all reflections to be modeled, and
much larger thanL for accurate estimation. Time-domain
methods are sensitive to channel-order mismatch [10], and
their identifiability properties are not adequately understood,
especially in under-determined cases.

Frequency-domain BSS methods begin by mapping the
problem to the frequency domain by applying the Discrete-
Fourier-Transform (DFT) on the observed signals:

x(t) = H ⋆ s(t) ↔ x(f, q) ≈ H(f)s(f, q), (3)

where f is a frequency index,f = 1, . . . , F , q is a frame
index, x(f, q) = [x1(f, q), . . . , xJ (f, q)]T and s(f, q) =
[s1(f, q), . . . , sI(f, q)]T . The ith column ofH(f) represents
the spatial signature of theith speaker in the frequency
domain, at frequencyf . Note that the approximation (3) is
exact only for periodic signalss(t), or equivalently, if the
time-convolution is circular. This approximation is satisfactory
if F is significantly larger than the maximum lengthL of the
mixing channels [6]. To limit the circularity effect, a spectral
smoothing approach is commonly used [26]. In practice, we
will compute the DFT of consecutive overlapping windowed
frames (a Hanning window will be used).

The main advantage of a frequency-domain approach is to
transform the initial convolutive time-domain model into aset
of instantaneous BSS problems, for which several efficient
algorithms have been proposed in the literature. However, the
main difficulty with BSS in the frequency-domain is the need
to cope with the permutation and scaling ambiguities, i.e.,the
mixing matrix is estimated up to an arbitrary permutation and
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scaling of its columns for each frequency. Before converting
the estimated source signals back to the time domain, the
scaling ambiguity must be compensated and a permutation
matching procedure must be applied to associate the spectral
components belonging to the same source. Different methods
have been proposed to resolve the permutation ambiguity; see
[10] for a recent survey. In SectionV, we will propose a new
variation of the the permutation correction techniques pro-
posed earlier in [8, 21, 22]. This yields significant complexity
reduction relative to the fully iterative methods in [8, 21,22],
without sacrificing performance.

Before proceeding further, we list our main assumptions:
Assumption 2.1-The speaker signalss(t) are zero-mean,

mutually uncorrelated.
Assumption 2.2-The number of speakersI is known, but

not necessarily smaller than the number of microphonesJ1.
Assumption 2.3-The impulse responses of all mixing filters

are assumed constant during the recordings2.

B. Channel Estimation

We consider that each recorded signalxj(t), j = 1, . . . , J ,
is a vector ofN samples. Let us divide the whole data block
into P non-overlapping sub-blocks, such that each sub-block
containsNP =

⌊

N
P

⌋

snapshots. These sub-blocks are indexed
by p = 1, . . . , P , and thepth sub-block corresponds to the
set ofNP snapshots between instantstp−1 andtp. We denote
by TP = NP

Fs

the duration of each sub-block, whereFs is
the sampling frequency. Under this framework, theJ × J

autocorrelation matrixRx(f, p)
def
= E[x(f, p)xH(f, p)] can

be written as

Rx(f, p) = H(f)Rs(f, p)HH(f), (4)

where Rs(f, p)
def
= E[s(f, p)sH(f, p)] is the autocorrela-

tion matrix of the speaker signals in thepth sub-block for
frequency-binf . Algorithms that exploit non-stationarity must
selectTP such that the successive sub-blocks are uncorrelated.
For speech applications, the sub-block durationTP must be
at least40 ms, as this is generally the lower bound for which
speech is considered non-stationary [1]. The statistics are then
sufficiently different from one time-lag to another, such that
one can simultaneously exploit theP sub-blocks, for a given
frequency bin:











Rx(f, 1) = H(f)Rs(f, 1)HH(f),
...

...
...

Rx(f, P ) = H(f)Rs(f, P )HH(f).

(5)

Since we assume mutually uncorrelated speaker signals, we
postulate diagonal autocorrelation matricesRs(f, p), for f =
1, . . . , F andp = 1, . . . , P . Estimation ofH(f) thus resumes
to a JAD problem for each frequency-bin.

In practice, the exact autocorrelation matricesRx(f, p) are
unavailable but can be estimated from the samples ofx(t), t =

1If the number of speakers is unknown, it can be estimated as outlined in
SectionIV-B.

2If the mixing environment is varying, the BSS problem has to be solved
adaptively. This issue is addressed in SectionVII .

1, . . . , N . For each sub-blockp of NP samples, we compute
the F -point DFT of several consecutive overlapping frames
x(f, q) (each consisting ofF temporal samples) with aF -
point window (typically a Hanning window). For instance, if
α denotes the overlapping factor (e.g.α = 0.75), then the
number of overlapping frames within each sub-blockp is

M =

⌊

NP − Nα

F − Nα

⌋

, (6)

whereNα = ⌊αF ⌋ is the number of samples in the overlap-
ping segment. The sample autocorrelation matrix estimate,for
frequencyf and sub-blockp, is then given by

R̂x(f, p) = 1
M

∑M

m=1 x(f, kp,m + 1 : kp,m + F )
xH(f, kp,m + 1 : kp,m + F ),

(7)

wherekp,m is a super-index that combinesp andm as follows

kp,m = (p − 1)NP + (m − 1)(F − Nα). (8)

Typical JAD-based techniques such as [5, 6, 8] require
rank(H(f)) = I, for f = 1, . . . , F , therefore they cannot
be employed in the under-determined caseJ < I. In the
following section, we show that each JAD system (5) can
equivalently be written as the PARAFAC decomposition of the
third-order tensorRx(f) ∈ CJ×J×P , built by stacking the

P matrices
{

R̂x(f, 1), . . . , R̂x(f, P )
}

one after each other
along the third dimension. This PARAFAC-based reformula-
tion was used in [20] for instantaneous mixtures. Its gener-
alization to convolved mixtures implies that the PARAFAC
model is now valid for each frequency-bin. One major benefit
of the PARAFAC reformulation over the aforementioned JAD
techniques is that it does not necessarily requireJ ≥ I for the
mixing matrixH(f) to be unique (up to non-singular scaling
and permutation of its columns).

III. L INK TO THE PARAFAC MODEL

A. Reformulation of the problem

In this section, we show that (5) is equivalent to a
PARAFAC model. Each element of the tensorRx(f) is
denoted byr(x)

j1,j2,p(f), with j1 = 1, . . . , J , j2 = 1, . . . , J and
p = 1, . . . , P . The elements ofH(f) are denoted byhj,i(f).
We build theP×I matrixC(f) whose element on thepth row
and ith column, denotedcp,i(f), is the ith diagonal element
of Rs(f, p), i.e., the power spectral density of theith source
within thepth sub-block at frequency-binf . It follows that the
elementsr(x)

j1,j2,p(f) can be written as a sum of triple products

r
(x)
j1,j2,p(f) =

I
∑

i=1

hj1,i(f)cp,i(f)h∗
j2,i(f). (9)

Eq. (9) is known as the conjugate-symmetric PARAFAC
decomposition of the tensorRx(f) and the number of
componentsI is the rank of this tensor [27]. By comput-
ing the PARAFAC decomposition ofRx(f) independently
for each frequency-bin, we obtain the entire collection of
frequency-domain mixing matrices{H(f), f = 1, . . . , F} and
source power spectra{C(f), f = 1, . . . , F}, up to frequency-
dependent permutation and scaling of columns. In the next
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section, we discuss the uniqueness conditions for conjugate-
symmetric PARAFAC, under which these matrices are identi-
fiable up to the stated indeterminacies.

B. Identifiability

The tensorRx(f) is built from elements of the matrices
H(f) andC(f) combined as in (9). The conjugate-symmetric
PARAFAC decomposition ofRx(f) in Eq. (9) is said to be
essentially uniqueif any other matrix pairH̃(f) and C̃(f)
that satisfies (9) is related toH(f) andC(f) via

H(f) = H̃(f)ΠΛ1, C(f) = C̃(f)ΠΛ2, (10)

with Λ1, Λ2 diagonal matrices satisfyingΛ1Λ
∗
1Λ2 = II and

Π a permutation matrix. Therefore, the ambiguities of the
PARAFAC model are the same as in JAD formulation, i.e.,
H(f) and C(f) are estimated up to arbitrary scaling and
permutation of their columns. The way these ambiguities can
be corrected will be discussed in SectionV.

A first uniqueness result requires the notion of Kruskal-rank
of a matrix [27].

Definition 1: The Kruskal rank or k-rank of a matrix H,
denoted bykH, is the maximum numberr such thatany set
of r columns ofH forms a linearly independent set.

The following theorem establishes a condition under which
essential uniqueness of the conjugate-symmetric PARAFAC
decomposition (9) is guaranteed [27, 28].

Theorem 1:The decomposition (9) is essentially unique if

2kH(f) + kC(f) ≥ 2(I + 1). (11)

It is worth noting that condition (11) is sufficient but not
necessary for identifiability. For a different uniqueness condi-
tion, we assume thatI ≤ P . In [29], a relaxed identifiability
condition for the conjugate-symmetric PARAFAC model has
been derived and is presented in the following theorem.

Theorem 2:Suppose that the elements ofH(f) and C(f)
are drawn from a jointly continuous distribution. IfI ≤ P
and

I(I − 1)

2
≤

J(J − 1)

4

(

J(J − 1)

2
+ 1

)

−
J !

(J − 4)!4!
1{J≥4},

(12)
where

1{J≥4} =

{

0, if J < 4
1, if J ≥ 4

,

thenH(f) and C(f) are essentially unique with probability
one.

In our context,J corresponds to the number of microphones
andI to the number of sources. The following Table gives the
upper bound forI such that (12) is satisfied, for different
values ofJ [20]:

J 2 3 4 5 6 7 8
Imax 2 4 6 10 15 20 26

From this table, it is clear that the PARAFAC reformulation
of the frequency-domain BSS problem allows, in theory,
unique identification of the mixing matricesH(f), for f =
1, . . . , F , even in certain under-determined cases. This is a
major advantage over typical JAD techniques, which require

J ≥ I to solve (5). Note also that invoking uniqueness
properties of PARAFAC is a way to prove explicitly that joint-
decorrelation of a set of matrices is a sufficient criterion for
unique separation.

In the next section, we discuss the batch implementation of
the PARAFAC decomposition to separate the sources in the
frequency domain, in a static mixing environment.

IV. BATCH IMPLEMENTATION

A. Matrix Representation of the Tensor

Most of the algorithms designed to compute the PARAFAC
decomposition of a tensor use the different matrix representa-
tions of this tensor. In this paper, we will use the following
J2 × P matrix representation ofRx(f):

[Rx(f)](j1−1)J+j2,p = [Rx(f)]j1,j2,p, (13)

with j1 = 1, . . . , J , j2 = 1, . . . , J and p = 1, . . . , P . By
virtue of the conjugate-symmetric PARAFAC model,Rx(f)
is linked to the unknown matricesH(f) andC(f) as follows:

Rx(f) = [H(f) ⊙ H∗(f)]CT (f). (14)

B. Computation of the PARAFAC decomposition

In order to estimate the matricesH(f) and C(f) that fit
the PARAFAC model ofRx(f) optimally, an Alternating
Least Squares (ALS) algorithm is commonly used. The idea
of ALS is to update these matrices in an alternating way
at each iteration. We can tentatively ignore symmetry in the
model, i.e., treatH(f) andHH(f) as independent variables.
Conjugate symmetry of the data in (14) ensures that there
is little loss of efficiency in doing so; in the end we can
either use one of the two matrix estimates to extractH(f),
or average out the two. We refer to [14, 17, 30] for further
details on ALS. The advantage of ALS is that it works
under minimal (model identifiability) conditions; but it can
be slow to converge when dealing with ill-conditioned data.
An enhanced line search scheme can be inserted in the
ALS loop to speed up convergence, as proposed in [31] for
the real case and in [32] for the complex case. One can
also resort to a Newton-type optimization technique such as
the Levenberg-Marquardt algorithm [33]. Note also that the
complexity of these algorithms can be significantly reducedby
a dimensionality-reduction pre-processing step [34]. Another
very efficient algorithm to compute the PARAFAC decomposi-
tion was proposed in [35] and used in [20, 36]. This algorithm,
that we call PARAFAC-SD (for “PARAFAC via Simultaneous
Diagonalization”) computes the PARAFAC decomposition of
a rank-I tensor R ∈ C

J1×J2×J3 via joint-diagonalization
of a set of I symmetric matrices of sizeI × I. It can be
applied only under the conditionI ≤ min(J1J2, J3), where
the roles ofJ1, J2 and J3 can be permuted. This condition
is often met in practice, where time is typically the longest
dimensionJ3 of the observed tensor. Due to its high accuracy
and low complexity, the PARAFAC-SD algorithm is a good
candidate to solve the BSS problem in this paper. We now
briefly describe the principle of this algorithm, as it applies to
our particular context. Suppose thatI ≤ min(J2, P ), which
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is a realistic assumption for the BSS problem. Let us consider
the matrixRx(f) ∈ CJ2×P of Eq. (14). If rank(H(f)) =
min(I, J), then by virtue of a Khatri-Rao product property,
rank(H(f) ⊙ H∗(f)) = I. Under the assumptionP ≥ I,
C(f) is generically rank-I. As a consequence,Rx(f) is rank-
I and its reduced-size SVD can be written as

Rx(f) = U(f)Σ(f)VH(f), (15)

whereU(f) ∈ CJ2×I , Σ(f) ∈ RI×I is diagonal andV(f) ∈
CP×I . Note also that when the number of speakersI is a priori
unknown, it can be estimated as the number of significant
singular values ofRx(f), for a givenf . The core idea of
PARAFAC-SD is to link (14) and (15). Given thatRx(f) is
rank-I, there exists a non-singular matrixZ(f) ∈ CI×I , such
that

{

H(f) ⊙ H∗(f) = U(f)Σ(f)Z(f)
CT (f) = Z−1(f)VH(f)

. (16)

Estimation ofZ(f) is sufficient to compute the PARAFAC
decomposition. Obviously,C(f) = V∗(f)Z−T (f). Also, the
columns ofH(f) ⊙ H∗(f) are the vectorshi(f) ⊗ h∗

i (f),
i = 1, . . . , I, which are the vectorized representations of the
rank-1 matriceshi(f)hH

i (f). As a consequence,hi(f), i =
1, . . . , I, can be determined, up to a scaling factor, as the left
singular vector associated with the largest singular valueof the
corresponding rank-1 matrix. The key point to findingZ(f)
is to impose thatU(f)Σ(f)Z(f) has a Khatri-Rao structure.
It was shown in [35] for the general un-symmetric PARAFAC
decomposition thatZ(f) diagonalizes a set ofI symmetricI×
I matrices{M1(f), . . . ,MI(f)} by congruence. For further
details on the way these matrices are built, we refer to [20,
35, 36].

This reformulation has two major advantages over classical
JAD-based BSS algorithms: i) PARAFAC is uniquely identi-
fiable in certain under-determined cases (see SectionIII-B ),
thusproving uniqueness of the (estimated) channel matrix,
ii) while usual JAD-based techniques jointly diagonalize the
initial system ofP matrices of sizeJ×J , PARAFAC-SD fully
capitalizes on the strong algebraic structure of the PARAFAC
model to end up with a smaller JAD problem comprisingI
matrices of sizeI × I. The resulting complexity reduction is
very significant, even with short signals. Let us consider a
simple example withJ = 4 microphones,I = 2 speakers
and a short signal split intoP = 12 epochs. For each
frequency, instead of jointly diagonalizing12 matrices of size
4 × 4, PARAFAC-SD jointly diagonalizes2 matrices of size
2 × 2. With a large FFT length (e.g.,1024 is typical), the
complexity advantage over classical JAD methods becomes
very pronounced.

The compacted problem for each frequency bin can be
solved by any JAD (or PARAFAC) fitting algorithm. The
overall accuracy of PARAFAC-SD depends on the algorithm
used for this last step. In practice, we will use the extended
QZ-iteration [37], as in the original paper [35].

Once the PARAFAC-based separation stage is complete, the
scaling and permutation ambiguities have to be corrected. This
second stage is addressed in the following section.

V. SCALING AND PERMUTATION AMBIGUITIES

Let Ĥ(f) denote an estimate of the matrixH(f). In the case
of perfect estimation, these matrices are linked as follows

Ĥ(f) = H(f)D−1(f)Π−1(f), (17)

whereΠ(f) is an unknown permutation matrix andD(f) an
unknown diagonal matrix. In order to compensate scaling and
permutation ambiguities, the task is now to estimateD(f) and
Π(f).

A. Scaling Ambiguity

One possible approach to compensate the scaling ambiguity
is the so-calledminimal distortion principle [26, 38]. We
chooseD(f) as

D(f) = diag[QĤ(f)], (18)

whereQ ∈ RI×J is a matrix all of whose entries are1/J and
diag(·) retains only the diagonal elements and makes the non-
diagonal elements zero. This choice ofD(f) can be interpreted
as follows. If Ĥ(f) is full-column rank for every frequency

bin, we can form the demixing matriceŝW(f)
def
= Ĥ†(f),

f = 1, . . . , F . The mixing system is characterized at frequency
f by the following equation

x(f, q) = H(f)s(f, q). (19)

If we left-multiply both sides of (19) by Ŵ(f), we get

ŝ(f, q)
def
= Ŵ(f)x(f, q)

= Π(f)diag[QĤ(f)]s(f, q). (20)

It follows that

ŝi(f, q) =
1

J

J
∑

j=1

ĥj,i(f)sΠ(i)(f, q), (21)

wheresΠ(i)(f, q) denotes theith component ofΠ(f)s(f, q).
In case of perfect separation, the interpretation of (21) is that
the ith output of the BSS algorithm is the average of all
observations of theΠ(i)th source across the sensors, when
all other sources are switched off. The task is now to estimate
the permutation matricesΠ(f), f = 1, . . . , F , such that the
ith outputŝi(f, q) in (21) strings together the spectral compo-
nents originating from the same sourcesΠ(i)(f, q) across all
frequency bins.

B. Permutation Ambiguity

The spectral alignment is a very challenging problem. IfI
sources are present, there areI! possible permutations for each
frequency bin, which yields a difficult combinatorial problem.
Many techniques to solve the permutation problem have been
proposed in the literature and we refer to [10] for a survey.
Several techniques rely on geometric information, such as
estimation of the Direction Of Arrival (DOA), see [26] and
references therein. Other techniques rely on the consistency
of the filter coeffcients. The latter approach exploits prior
knowledge about the mixing filters and the solution can be
achieved by requiring the frequency responseH(f) of the
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mixing filter to be continuous inf [39]. It is also possible
to impose smoothness of the demixing filter values in the
frequency domain. This is done in [6] by restricting the
frequency domain updates of the demixing filter in (2) to have
a limited support in the time domain, i.e.,W(τ) = 0 for
τ > K ≪ F . Restricting the filter length may be problematic
in highly reverberant environments where long separation
filters are necessary to take all reverberations into account.
It is mentioned in [6] that if a long demixing filter length
K is needed, one can choose an appropriately large frame
size F such that the restrictionK ≪ F due to the circular
convolution approximation still holds. However, large values
of F significantly increase the overall complexity. Another
category of permutation correction techniques exploits prop-
erties of speech signals. One commonly exploited property is
the interfrequency correlation of speech signal envelopes[40,
41], which is due to the nature of speech production3. For
instance, when the talker speaks louder, all spectral compo-
nents of the signal tend to increase in level, and vice-versa.
Based on this idea, several criteria and associated sequential
adjustment strategies have been proposed to impose frequency-
coupling between adjacent frequency bins, see e.g., [5, 9].The
major drawback of sequential adjustment strategies iserror
propagation, i.e., an error made in the permutation correction
at frequency binf may strongly affect the correction at
following frequencies. To avoid this problem, one possible
approach is to use a clustering-based method to estimate a
frequency-independent reference profile (or centroid) foreach
separated source, and then permute, for each frequency, the
I frequency-dependent profiles such that they all match a
different reference profile. This clustering-based idea has been
exploited in e.g., [8, 21, 22]. The three key ingredients of these
clustering-based techniques are:
i) the definition of the quantities that are clustered, i.e.,the
source profiles (e.g., signal envelopes, log-power profiles, etc),
ii) the measure used to quantify the matching level between
the centroids and the profiles (e.g., correlation, distance, etc),
and
iii) the clustering strategy.
In [21], the profileγ̂i(f, q) of a separated signal̂si is taken
to be its envelope,̂γi(f, q) = |ŝi(f, q)|. In [22], the profile
γ̂i(f, q) is a certaindominance measure. In [8], the profile for
the ith separated source is defined by its centered log-power
spectral densitŷγi(f, q) = log[Ŵi,:(f)Rx(f, q)ŴH

i,:(f)]. The
length Nf of the profiles is also an important parameter for
clustering-based approaches to be accurate, especially for short
signals. In practice, the profileŝγi(f, q) are computed for
overlapping frames over the whole signal. Once the profiles
are computed, the task is to compute the centroids and
perform clustering. The underlying assumption of clustering-
based approaches is that profiles coming from the same source,
but at different frequencies, are still more similar than those
from other sources. In order to associate each source profile
to a centroid for each frequency, one can possibly maximize

3According to the popular source-filter model of speech production, the
excitation is filtered through a cascade of second-order oscillators resulting
in strong spectral correlation [1].

correlation measures [21, 22] or minimize distance measures
[8] across theI! possible permutations for each frequency.
At this point, the clustering strategy is crucial. In [8, 21,22],
the centroids and the permutation matrices are updated in
an iterative way. For each iteration, the centroids are first
updated as the average over all frequencies of the current
source profiles. Then, the source profiles are permuted so
as to match the current centroids, according to the chosen
measure (distance in [8] or correlation in [21, 22]). However,
the computation of this measure for theI! permutations andF
frequencies at each iteration entails a significant computational
cost.

In this section, we propose a more efficient clustering
strategy to avoid this problem. Unlike the aforementioned fully
iterative methods, the updates of the centroids and permutation
matrices are not interleaved, which significantly reduces the
complexity. Our scheme can be summarized as follows:
Step 1. Computation of the centroids.
Let us define theI × Nf matrix Γ̂(f) that collects theI
profiles γ̂i(f), i = 1, . . . , I. The FI × Nf matrix Γ̂ results
from the concatenation of the matricesΓ̂(f), f = 1, . . . , F .
Since the profiles have been computed for overlapping frames,
Γ̂ holds a set ofFI points varying smoothly with time. The
task is now to partition these points intoI clusters. This can
be done by application of thek-meansalgorithm onΓ̂, which
produces a frequency independentI × Nf centroid matrix
M = [mT

1 , . . . ,mT
I ]T . This centroid matrix is such that the

sum over all clusters, of the within-cluster sums of point-to-
cluster-centroid distances is minimized4.
Step 2. Finding the permutation matrices.
For each frequency bin, we now look for theI×I permutation
matrix Π(f) such thatΓ̂(f)Π(f) matchesM, according to
the chosen measure. One possible option [8] is to solve

min
Π(f)

φ(f), f = 1, . . . , F, (22)

whereφ(f)
def
=

∥

∥

∥
M − Γ̂(f)Π(f)

∥

∥

∥

2

F
. Another option [21, 22]

is to solve

max
Π(f)

I
∑

i=1

ρ(mi, [Γ̂(f)Π(f)]:,i), (23)

whereρ denotes the correlation coefficient. To solve (22) or
(23), we compute the exhaustive set ofI! measures for each
frequency and retain the permutation matrix that corresponds
to the best solution5.

The main feature in our scheme is that only Step 1 is
iterative and (22) or (23) is solved only once. This a major

4The k-meansalgorithm also produces a list of indices that assigns each
of the FI points to one of theI clusters. This list may assign more (or less)
thanF points to each of theI clusters. We noticed through simulation results
that the assignment is however generally very close toF points per cluster
which confirms the validity of the aforementioned property of speech signals.
Since we have to assign exactlyF points to each cluster, we only exploit the
centroid matrixM.

5To avoid the computation ofI! distances at each frequency, one can use a
deflationapproach. For a given frequency, the idea is to associate andremove
the best-matching centroid-profile pair from the list of candidates, then repeat
the process. This greedy approach is of course suboptimal, but works almost
as well in practice.
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Criterion C1 Criteria C2 and C3
Clustering Log-power profiles with a distance measure [8]C2: Dominance profiles with a correlation measure [22]

method C3: Envelope profiles with a correlation measure [21]
iterative O(FNfI2(I − 1)!n) O(FNfI(I + 1)n + FI2(I − 1)!n)
k-means O(FNf I2n + FNfI2(I − 1)!) O(FNfI2n + FNfI2 + FI2(I − 1)!)

TABLE I

COMPLEXITY OF THE DIFFERENT PERMUTATION CORRECTION SCHEMES. n IS THE NUMBER OF ITERATIONS.
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(b) CPU time,I = 5 sources,F = 2048.

Fig. 1. Performance of the three criteria C1, C2 and C3 in solving the permutation problem, combined either with the one-passk-meansclustering strategy
or the fully iterative strategy. Labels of the six histograms, from left to right: (1) C1 with k-means, (2) C1 iterative, (3) C2 with k-means, (4) C2 iterative,
(5) C3 with k-means, (6) C3 iterative.

advantage over the entirely iterative strategies used in [8, 21,
22], where (22) or (23) are solved at each iteration.

C. Comparison between permutation solvers

In this paragraph, we compare the complexity and the
performance of the following criteria to solve the permuta-
tion problem: (C1) clustering of log-power profiles with a
distance measure (22), as proposed in [8], (C2) clustering
of dominance-profiles with a correlation measure (23), as
proposed in [22], (C3) clustering of envelope-profiles witha
correlation measure (23), as proposed in [21]. These crite-
ria are combined either with an entirely iterative clustering
strategy, as in their original version, or with thek-means
approach we proposed. The complexity orders of the different
combinations are reported in TableI. It is clear that the
clustering strategy that we proposed has a lower complexity
than its fully iterative counterpart. This results from thebenefit
of only estimating the centroids in an iterative way, instead of
interleaving updates of centroids and permutation matrices.

In Fig. 1, we compare the performance of the different
permutation solvers applied to arbitrarily permuted versions of
the true source profilesΓ(f), i.e., we simulate the output of a
perfect separation stage. The residual frequency-independent
permutation is resolved by a column-matching procedure, after
which we calculate the number of frequencies for whichΓ(f)
andΓ̂(f) are perfectly aligned and we compute the percentage
of success. The latter is represented by Fig.1 for I = 5
sources. The total execution time is also represented. Fromthis
figure, it is clear that clustering the log-power-profiles seems to

be a very efficient solution to solve the permutation problem,
since its performance index is close to100 percent, even with
5 sources of2 seconds only. In comparison, the two other
criteria (dominance-profiles and envelope-profiles) are more
sensitive to the signal length. As expected, the combination of
our k-means-based clustering strategy with the three criteria
allows a very substantial reduction of the complexity, relative
to the entirely iterative approach. Based on these observations,
since clustering the log-power profiles with ak-means-based
strategy offers the best trade-off between complexity and per-
formance, we will use this criterion after the PARAFAC-based
separation stage in real BSS situations. In SectionVIII-H , we
will compare the performance of these different permutation-
correction criteria, applied after a PARAFAC-based separation
stage, in a real BSS situation.

VI. U NDER-DETERMINED CASE

If Ĥ(f) is full-column rank for every frequency bin, sepa-
ration can be achieved in the frequency-domain byŝ(f, q) =
Ŵ(f)x(f, q), whereŴ(f) = Ĥ†(f) is obtained after cor-
rection of scaling and permutation ambiguities. The separated
sources are then estimated by applying the Inverse DFT to
{ŝ(f, q), f = 1, . . . , F}. Alternatively, one can first compute
the demixing matrix filterŴ in the time domain, by taking
the Inverse DFT of

{

Ŵ(f), f = 1, . . . , F
}

, after which the
deconvolution operation of Eq. (2) may be efficiently com-
puted via an overlap-add procedure. The latter approach will
be used in practice.
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In the under-determined case, the problem is more difficult.
Under the uniqueness conditions reported in SectionIII-B ,
PARAFAC allows to identifyH(f) in a unique way, up to
scaling and permutation ambiguities. The latter are corrected
as explained in SectionV. However, the resulting matrix̂H(f)
is not left pseudo-invertible and perfect separation is therefore
not possible. In this section, we show that substantial reduction
of crosstalk is still possible by using array processing methods,
in particular a time-varying version of Capon beamforming.
First, we notice that for a sufficiently short sub-blockp, the
probability that all sources have a high power spectral density
simultaneously is low6 For instance, ifI − J sources among
I have a long period of pause within sub-blockp, the under-
determined problem almost resumes to aJ × J determined
problem for this sub-block. This suggests that cross-talk reduc-
tion should be performed on a per-sub-block basis, to account
for variations of cross-talk powers (note that our method
automatically adjusts to these variations; itdoes notrequire
activity/pause detection). The task is then to find a set of
demixing matrices

{

Ŵ(f, p), f = 1, . . . , F, p = 1, . . . , P
}

,
such that cross-talk is reduced for each frequency and each
sub-block. This can be achieved by Capon beamforming. For
a given sourcei, a given blockp and a given frequencyf , we
look for a J × 1 beamforming vector̂wi(f, p) such that

ŝi(f, p) = ŵH
i (f, p)x(f, p)

= ŵH
i (f, p)ĥi(f)si(f, p)

+
∑

k 6=i ŵ
H
i (f, p)ĥk(f)sk(f, p),

(24)

preserves the first term and suppresses the second. Here,ĥi(f)
denotes theith column ofĤ(f) after scaling and permutation
ambiguities correction. In (24), ŝi(f, p) results from the sum of
a signal of interest and cross-talk signals. The vectorŵi(f, p)
that minimizes the Signal to Interference Ratio is the Capon
beamformer that solves

min
ŵi(f,p)

ŵH
i (f, p)Rx(f, p)ŵi(f, p) s.t. ŵH

i (f, p)ĥi(f) = 1.

(25)
The solution of this problem is

ŵi(f, p) =
R−1

x (f, p)ĥi(f)

ĥH
i (f)R−1

x (f, p)ĥi(f)
. (26)

Capon beamforming is then applied at each frequency for each
source and each sub-block.

VII. O NLINE IMPLEMENTATION

In the previous sections, we considered a constant mixing
environment and we proposed a batch PARAFAC solution of
the frequency-domain BSS problem. However, in real-world
situations, the mixing system can be considered as constant
only over short time intervals, due to speaker mobility, fluctu-
ations in the environment, etc. Online adaptive BSS algorithms
are therefore of great interest [3, 42]. In this section, we
show that the adaptation of the batch PARAFAC-based BSS
technique to the online case can be reduced to the problem of

6This is due to the time-varying spectral characteristics ofspeech sounds
[1], e.g., naturally occurring pauses in speech.

tracking one PARAFAC decomposition for each frequency, for
which we have recently proposed efficient adaptive algorithms
in [23].

Let us start with Eq. (14), which represents the PARAFAC
model of the output autocorrelation tensorRx(f) ∈ CJ×J×P ,
in terms of its matrix representationRx(f) ∈ CJ2×P . If
the mixing matrixH(f) is varying between two successive
epochs, it has to be indexed by time and the observed
autocorrelation matrix is now

Rx(f) =
[

(H(f, 1) ⊙ H∗(f, 1)) cT (f, 1), . . . ,
(H(f, P ) ⊙ H∗(f, P )) cT (f, P )

]

,
(27)

wherecT (f, p) is thepth column ofCT (f). As a consequence,
the PARAFAC model, and equivalently the JAD formulation,
remain approximately valid only if the mixing-matrixH(f, p)
is almost constant over theP consecutive time-lags. For a
sufficiently short time-intervalLk = [tk : tP+k−1], consisting
of P successive time-blocks, we can thus write

Rx(f, Lk) ≃ [H(f, Lk) ⊙ H∗(f, Lk)]CT (f, Lk), (28)

whereH(f, Lk) ≃ H(f, k) ≃ . . . ≃ H(f, P + k − 1) and
CT (f, Lk) = [cT (f, k), . . . , cT (f, P + k − 1)].

The problem can now be summarized as follows:

Given estimates ofH(f, Lk) andC(f, Lk), estimate
H(f, Lk+1) andC(f, Lk+1) from the observed
matricesRx(f, Lk) and Rx(f, Lk+1).

One possible solution to this problem is to apply a batch
PARAFAC algorithm repeatedly on the successive short inter-
vals Lk. Although the batch PARAFAC-SD algorithm proved
to be very fast compared to existing JAD techniques, its
adaptive version would be very desirable. This is precisely
the essence of the PARAFAC-SDT (“PARAFAC via Simulta-
neous Diagonalization Tracking”) algorithm proposed in [23].
PARAFAC-SDT solves (16) adaptively by tracking first the
SVD of Rx(f) before recursively updatingZ(f) andH(f).
For further details on this algorithm, we refer to [23].

In principle, an adaptive permutation solver is also neededto
come up with a complete adaptive BSS solution. Thankfully, as
we explain in the next section, a side-benefit of tracking using
PARAFAC-SDT is that updates are inherently incremental -
thus naturally preserving the correct permutation, provided that
the adaptive algorithm is properly initialized. Finally, there
exist adaptive implementations of Capon beamforming, and
these can be easily modified to derive a fully on-line solution
that is applicable in under-determined cases as well.

VIII. S IMULATION RESULTS

A. Simulation settings

In this Section, we illustrate the performance of the batch
and online PARAFAC-based algorithms developed in this
paper. The autocorrelation tensor is computed as explainedin
SectionII-B, with a Hanning window and an overlap coeffi-
cient fixed to75%. In the simulations conducted in this section,
we compare our complete solution (PARAFAC-SD separation
stage followed by k-means clustering of log-power profiles
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to align the separated spectral components) to the publicly
available complete JAD-based batch BSS algorithms proposed
in [6] and [5], labeled as “Parra” and “Rahbar”, respectively.
Parra’s algorithm is tested with a demixing-filter of length
F/8, as in the original paper [6]7. Rahbar’s algorithm requires
the same input parameters as our algorithm, which allows a
totally fair comparison. In experiments withI = 2 sources
andJ = 2 microphones, we will also compare our algorithm
to the JAD-based algorithm of [8], labeled as “Pham”, used
with the optimal parameters found by preliminary simulations
(note that only the implementation for the2 by 2 case was
found on the web for this algorithm).

We have collected a set of nine different signals, consisting
of speakers (three females and six males) reading sentences
during approximately30 seconds, with a sampling frequency
Fs = 16 KHz. These signals are truncated to a chosen length,
varying from experiment to experiment. For the comparison
between algorithms to be fair, we average the performance
over ten random draws ofI sources chosen among the nine
collected.

In the sequel, performance is assessed in a wide variety of
operational scenarios. In SectionsVIII-C andVIII-D , we use
real recordings of RIRs, resulting from experiments conducted
in the context of hearing aid design [43], with2 microphones.
In SectionVIII-E , we use the RIRs measured by A. Westner in
a conference room [44]. In SectionsVIII-F , VIII-G andVIII-
H, we use artificial RIRs generated by the method proposed
in [45], in order to study the impact of several parameters
such as the reverberation time or the location of sources and
microphones.

B. Performance Evaluation

From Eq. (2), the separated sources are given by

ŝi(t) =

J
∑

j=1

Wij ⋆ xj(t). (29)

The output SIR for̂si(t) is defined as the ratio of the power
of the portion of ŝi(t) coming from sourcei, ŝii(t), to the
power from cross-talk signalŝsik(t) [7]:

SIRi = 10log

∑

t ŝ2
ii(t)

∑

t

∑

k 6=i ŝ2
ik(t)

. (30)

In the experiments of this section, we will convolve speech
signals with pre-measured real-world or artificially generated
RIRs, so we have access to the microphone signalsxji(t),
j = 1, . . . , J , recorded when only theith source is present.
Therefore, we calculate the SIR for sourcei as8

SIRi = 10 log

∑

t

(

∑J

j=1 Wij ⋆ xji(t)
)2

∑

t

∑

k 6=i

(

∑J

j=1 Wij ⋆ xjk(t)
)2 . (31)

7Preliminary results with other filter lengths have shown that F/8 offers
the best performance in most (but not all) of the cases considered in this
section.

8In the under-determined case where Capon beamforming is used on a per-
sub-block basis, the inverse filter varies across sub-blocks. In this caseSIRi

is computed in a similar way, except thatŝ2

ii(t) and ŝ2

ik
(t) in (30) are built

by concatenation of their successively estimated sub-blocks.
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Fig. 2. Impact of FFT length,2 by 2 case,TP = 0.25 sec,T60 = 130 ms.

We will use the SIR averaged over all sources as a single
overall performance measure. The input SIR, i.e., the SIR
obtained without any processing, will also be given as a
baseline.

C. Experiment 1: two by two case

In this first experiment (Figs.2 and 3), we compare the
different batch algorithms withI = 2 sources andJ = 2
microphones. We have used real recordings of RIRs, resulting
from experiments conducted in the context of hearing aid
design [43]. The chosen room is a semi-reverberant classroom
with dimensions17′10′′ by 32′9′′ by 8′8′′ (named PC335 in
the database). The reverberation timeT60 is around130 ms.
These recordings allow to choose between different positions
of the speakers on a circle around the microphones by selection
of angles between0° and338°. The radius of the circle is3′.
The signal duration is fixed to10 s and the duration of each
sub-block isTP = 0.25 s, i.e., the recordings are partitioned
in P = 40 segments. Performance is averaged over5 different
pairs of positions, one source being fixed at0° while the
second is successively positioned at45°, 90°, 135°, 180° and
225°. As mentioned previously, performance is also averaged
over ten random pairs of sources.

In Fig. 2, we illustrate the impact of the FFT lengthF
on the output SIR. The average input SIR was−2.1 dB in
this experiment. It turns out that PARAFAC-SD and Pham’s
algorithms achieve similar SIR and outperform Rahbar’s and
Parra’s techniques. Comparison of execution times (not shown
here) revealed that PARAFAC-SD was between1 and 2
decades faster than the three other batch algorithms.

In Fig. 3, we test the four algorithms on truncated record-
ings, whose duration is varying from2 s to 10 s. The FFT
length is fixed toF = 2048. Figs. 3(a) and3(b) represent
evolution of the output SIR and execution time, respectively.
For a short signal (between2 s and4 s), our method sub-
stantially outperforms Parra’s and Rahbar’s techniques and
slightly outperforms Pham’s method. This results from the
combination of a fast and accurate PARAFAC-based sepa-
ration stage, followed by a fast and accurate permutation
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Fig. 3. Impact of signal duration,2 by 2 case,F = 2048, TP = 0.25 s, T60 = 130 ms. (a) Evolution of SIR. (b) Evolution of execution time.
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90°. Evolution of SIR vs. signal duration (average over10 random pairs of
sources). Comparison between batch PARAFAC and online PARAFAC-SDT
(with or without solving the permutation problem at each step of the online
mode).

correction scheme, which proved to work well even with short
signals (see SectionV-C). From4 seconds, PARAFAC-SD and
Pham’s algorithms perform similarly, and outperform Rahbar’s
and Parra’s algorithms. Note that PARAFAC-SD is always
faster than the three other algorithms, and becomes much faster
when the signal duration increases. The signal duration has
little impact on the execution time of the PARAFAC-based
separation stage since the latteralwaysreduces the dimension
of the problem to a set ofI matrices to jointly diagonalize (the
number of matrices to diagonalize is reduced fromP = 40
to P = I = 2 in this experiment). Of course, the execution
time of the global solution shown in Fig.3(b) increases with
time, since the permutation correction scheme has to cluster
profiles of increasing length.

D. Experiment 2: Adaptive PARAFAC

In this second experiment (Figs.4 and5), we illustrate the
performance of the online PARAFAC-SDT algorithm. We used
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Fig. 5. Performance of PARAFAC-SDT algorithm in the2 by 2 case.
F = 1024, TP = 0.128 s, Pinit = 15 (≃ 2 s), T60 = 70 ms.
Varying environment. Evolution of output SIR for each speaker. Sequence 1:
initialization with batch PARAFAC-SD onPinit = 15 sub-blocks, speakers
positioned at0° and 90°. Sequence 2: online mode, positions are the same
as in Seq. 1. Sequence 3: speaker 2 keeps the same position, while speaker
1 is moved instantaneously. Average InputSIR = −1.65 dB for Sequences
1 and 2, and−2.48 dB for Sequence 3.

room PC323c from the same database [43], withI = 2 sources
andJ = 2 microphones. The reverberation timeT60 is around
70 ms. The FFT length is fixed toF = 1024 and the epoch
duration toTP = 0.128 s.

In Fig. 4, the mixing environment is constant. We com-
pare the performance of the batch PARAFAC-SD algorithm
applied repeatedly on signals of increasing length to that of
its online counterpart (PARAFAC-SDT), used with a sliding
exponentially decaying window of length10 sub-blocks and
a forgetting factor equal to0.8 (see [23] for details on this
algorithm). We have plotted the evolution of the SIR averaged
over both users and ten random pairs of sources. For a given
sub-blockp, the SIR of a given user is computed by Eq. (31),
whereWij is substituted by its estimatêWij(p) for this block
and xji(t) and xjk(t) consist of all available samples (i.e.,
pNP samples) of the recorded signals up to thepth block.
PARAFAC-SDT is initialized with the mixing matrix estimated
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by batch PARAFAC-SD applied on the firstPinit = 15 sub-
blocks (i.e., approximately2 seconds). Then, PARAFAC-SDT
is combined with one of the two following options for the
rest of the recording: (O1) the permutation problem is globally
resolved for each new block (after the recursive updates) by
taking into account all previous blocks; or (O2) it is never
solved in online mode. From Fig.4, it is clear that both options
yield similar performance. The reason is that PARAFAC-SDT
recursively updates the new matrices explicitly as a function
of the old estimates, such that the tracking stage does not
introduce new arbitrary permutations. Consequently, since the
frequency-dependent permutation problem is well solved in
the initialization step (this is due to the effectiveness of
the permutation correction scheme for short signals), it is
not necessary to solve it again in online mode. From this
first observation, we deduce that the small performance gap
(around 1 dB only) between batch PARAFAC-SD and its
online version results from the separation stage only. On the
other hand, PARAFAC-SDT has a much lower complexity than
its batch counterpart [23]; it was on average20 times faster
than PARAFAC-SD in this experiment.

In Fig. 5, we illustrate the tracking capability of PARAFAC-
SDT. During the first5 seconds, the sources are fixed at
90° and 0°, respectively. After5 seconds, the first source is
instantaneously moved from90° to 135°, while the second
source is kept fixed. The SIR of each speaker was computed
as follows. In the first sequence (initialization) ofPinit = 15
blocks, we applied the batch PARAFAC-SD algorithm, and the
SIR of each user resulting from (31) is replicatedPinit times
in the figure. In the second sequence (online mode between
t = 2 s andt = 5 s), both users have the same position as
in the first sequence, and we compute the SIR as before. In
the third sequence, SIR for the second speaker (who remains
in the same position) is computed on the whole data up to
present time, whereas SIR for the first speaker (who moves
instantaneously att = 5 sec) is only computed over samples
corresponding tot > 5 s. The key point is that the update of
the demixing filter for this speaker does not exploit the benefit
of a “good” initialization (with batch PARAFAC-SD), since
the mixing-environment has been instantaneously changed.We
observe that after4 sub-blocks (about half a second), the
SIR of the first speaker reaches a level close to its initial
value, which illustrates the very good tracking capabilityof
the PARAFAC-SDT algorithm. Note that this good tracking
capability is also illustrated in [23], in a completely different
context (tracking the trajectories of multiple targets in aMIMO
radar system).

E. Experiment 3: Highly reverberant environment

Although the database used in the first two experiments
provides real world RIRs recordings, it is limited toJ = 2
sensors only, since it was built in the context of hearing
aid design [43]. In this third experiment, we use the RIRs
measured by A. Westner in a conference room of size3.5 m×7
m×3 m, with 8 microphones [44]. The duration of these RIRs
is 750 ms, such that the full room acoustics is captured, and the
reverberation timeT60 is around300 ms, which characterizes
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Fig. 6. Westner’s RIRs recordings. Impact of FFT length.I = 3 sources,
J = 6 microphones,TP = 0.5 s. T60 = 300 ms. InputSIR = −2.8 dB.
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Fig. 7. Westner’s RIRs recordings. Impact of the number of microphones.
I = 3 sources,TP = 0.5 s, F = 4096, T60 = 300 ms. InputSIR between
−3.5 dB and−1.46 dB, depending on the value ofJ .

a highly reverberant environment. The duration of the sources
is fixed to 10 seconds and performance is averaged over10
random draws of the sources.

In Fig. 6, we illustrate the impact of the FFT length with
I = 3 sources andJ = 6 sensors. As observed in the2
by 2 case, PARAFAC-SD outperforms Parra’s and Rahbar’s
techniques in terms of output SIR. In terms of execution time,
PARAFAC-SD was approximately10 times faster than Parra’s
algorithm and100 times faster than Rahbar’s algorithm.

In Fig. 7, F is fixed to 4096 and we illustrate the impact
of the number of microphones, withI = 3 sources. Contrary
to Parra’s and Rahbar’s techniques, PARAFAC-SD achieves
“satisfactory” separation quality with only3 microphones.
WhenJ increases, the quality of separation improves for the
three algorithms but PARAFAC-SD yields the best output SIR.

F. Experiment 4: Under-determined case

In this fourth experiment (Fig.8), we consider under-
determined cases and we illustrate the performance of
PARAFAC-SD algorithm followed by Capon beamforming, as
described in SectionVI . The sources have10 seconds duration



12

0.1 0.15 0.2 0.25 0.3
−5

0

5

10

15

20

25

T
60

 (sec.)

S
IR

 [d
B

]

 

 
Determined case, PARAFAC−SD, I=4, J=4
Determined case, Rahbar, I=4, J=4
Determined case, Parra, I=4, J=4
Underdetermined case, PARAFAC−SD+Capon, I=4, J=3

(a)
0.1 0.15 0.2 0.25 0.3

−4

−2

0

2

4

6

8

10

12

14

16

T
60

 (sec.)

S
IR

 [d
B

]

 

 
Determined case, PARAFAC−SD, I=5, J=5
Determined case, Rahbar, I=5, J=5
Determined case, Parra, I=5, J=5
Underdetermined case, PARAFAC−SD+Capon,I=5,J=4

(b)

Fig. 8. Performance of PARAFAC-SD followed by time-varyingCapon beamforming in the under-determined case,F = 2048, TP = 0.256 s.
Comparison with the determined case with PARAFAC-SD, Parra’s or Rahbar’s algorithms. InputSIR between−2.02 dB and−4.84 dB, depending on the
value ofT60. (a) I = 4 sources. (b)I = 5 sources.

and they are convolved with artificial RIRs, generated by the
method proposed in [45]9. Artificial RIRs generators allow to
test BSS algorithms in various situations, since the dimensions
of the room, the locations of the sources and microphones and
the reverberation time can be freely chosen. In this experiment,
the dimensions of the chosen room are5 m×5 m×2.3 m. The
RIRs are generated forI = 5 sources andJ = 5 microphones.
The x and z coordinates of the5 sources are fixed to2 and
1.6, respectively, while they coordinates are{1, 1.5, 2, 2.5, 3}.
Thex andz coordinates of the5 sensors are fixed to3 and1.6,
respectively, while they coordinates are{1, 1.4, 1.8, 2.2, 2.6}.
F is fixed to 2048 and TP to 0.5 s. The performance is
averaged over10 random draws of the sources.

In Fig. 8(a), only the first4 sources have been mixed and we
represent the evolution of the SIR averaged over all sourcesas
a funtion of the reverberation timeT60, in the two following
situations:

i) The first 4 microphones are used. In this exactly deter-
mined case, the estimated mixing matrix is invertible and the
same demixing filterWij is therefore used for all sub-blocks.
The performance of PARAFAC-SD, Parra’s and Rahbar’s
algorithms is plotted.

ii) The first 3 microphones only are used. In this under-
determined case, the mixing matrix is first estimated by
PARAFAC, after which the demixing filtersWij(p) are es-
timated by Capon beamforming for each sub-block.

In Fig. 8(b), we proceed similarly to compare the5 by 5
exactly determined case to the5 by 4 under-determined case.

As a conclusion, though the separation quality naturally
decreases with an increasing reverberation time, PARAFAC-
SD (followed by Capon beamforming) performs very well
in the under-determined case. In particular, it significantly
outperforms Parra’s and Rahbar’s techniques even when the
latter two are given the benefit of using one more microphone,
thus operating in the exactly determined regime. This is
indicative of the strengths of the proposed approach. It is also
worth noticing that the gap between the under-determined and

9http://home.tiscali.nl/ehabets/rir_generator.html

the exactly determined cases can be quite small for PARAFAC-
SD + Capon, see Fig.8(b). Additional experiments for chal-
lenging under-determined cases can be found athttp://
www.telecom.tuc.gr/~nikos/BSS_Nikos.html.

G. Experiment 5: variable source and microphone positions

In this fifth experiment (Fig.9), we compare the perfor-
mance of the three batch algorithms as a function of the
locations of the sources and the microphones. The number
of sources isI = 2 and the number of microphonesJ = 6.
Performance is averaged over10 random draws of the sources.
As in the previous section, we use artificial RIR’s [45]. The
size of the room is12 m × 9 m × 3 m and the reverberation
time is fixed toT60 = 200 ms. The signals have5 seconds
duration.

In a first scenario (Fig.9(a)), we observe the impact of
the distance between the microphones. PARAFAC-SD signif-
icantly outperforms Parra’s and Rahbar’s algorithms. When
the distance between microphones increases, the performance
of the three techniques improves. This was expected, since
increasing this distance decreases the correlation between
the different RIRs, which in turn, makes the simultaneous
diagonalization problem better conditioned.

In a second scenario (Fig.9(b)), we proceed similarly, but
this time we vary the distance between the sources. We observe
that the separation performance improves when this distance
increases, up to a certain point. Notice also that PARAFAC-
SD works very well (giving SIR of12 dB) when the sources
are only20 cm apart.

In a third scenario (Fig.9(c)), we observe the impact of
the distance between sources and sensors. Again, PARAFAC-
SD significantly outperforms Parra’s and Rahbar’s algorithms.
When the sources are getting closer to the microphone array,
the performance of the three algorithms improves. This was
expected since the convolutive mixing problem is then getting
closer to a simpler instantaneous mixing problem (one dom-
inant direct path with high energy, relatively to the reflected
paths).
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Fig. 9. Impact of sources and sensors locations.I = 2 sources,J = 6 microphones.F = 2048, TP = 0.256 s. Room of size12 m × 9 m × 3 m,
T60 = 200 ms.
(a) Impact of inter-microphone distance. Sources:{(2, 1, 1.6), (2, 2, 1.6)}. Microphones:{(11, (j − 1)dm + 1, 1.6)}j=1,...,6, with distancedm varying
from 0.1 m to 0.5 m. Average InputSIR = −2.56 dB.
(b) Impact of inter-source distance. Sources:{(5, 1, 1.6), (5, 1+ ys, 1.6)}, with ys varying from0.2 to 5. Microphones:{(8, 0.3(j − 1) +1, 1.6)}j=1,...,6.
Average InputSIR = −3.02 dB.
(c) Impact of the distance between sources and microphones.Sources:{(xs, 1, 1.6), (xs, 2, 1.6)}, with xs varying from 2 to 10.5. Microphones:
{(11, 0.3(j − 1) + 1, 1.6)}j=1,...,6. Average InputSIR = −2.72 dB.

H. Experiment 6: Comparison of permutation criteria

In this last experiment (Fig.10), we apply the different
permutation-correction criteria proposed in SectionV-B after
a PARAFAC-SD separation stage, for varying reverberation
times. The room has the same dimensions as in the previous
experiment. The number of sources isI = 3, and the number
of microphonesJ = 8. The signal duration is5 s. The
coordinates of the sources are(10, 1, 1.6), (10, 2, 1.6) and
(10, 3, 1.6). The x and z coordinates of the8 sensors are
fixed to 11 and 1.6, respectively, while they coordinates
are {1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4}. It can be observed that
criteria C1 (clustering log-power profiles with a distance
measure) and C2 (dominance profiles with a correlation mea-
sure) yield similar performance and outperform criterion C3
(envelope profiles with a correlation measure). This confirms
the observations made in SectionV-C. Computation of C1
and C2 via thek-means-based approach we proposed yields
performance that is similar to the entirely iterative clustering
strategy, but thek-meansstrategy has a far lower complexity
(see TableI).

Several additional experiments (including challenging
under-determined cases and speech-music mixtures) are avail-
able athttp://www.telecom.tuc.gr/~nikos/BSS_
Nikos.html.

IX. CONCLUSION

In this paper, we have proposed a PARAFAC-based ap-
proach to solve the BSS problem for convolutive speech
mixtures in the frequency domain. Our approach is very
competitive, since it provides better separation performance
at much lower complexity relative to the state-of-art. These
benefits come from combining a fast and accurate PARAFAC
algorithm for the separation stage, with an efficient frequency-
dependent permutation correction scheme.

Contrary to earlier work in blind speech separation, the
link to PARAFAC allows estimation of the mixing matrix
in under-determined cases - there isproof of identifiability.
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Fig. 10. Comparison between several permutation correction criteria after the
same PARAFAC-SD separation stage.I = 3 sources,J = 8 microphones,
F = 2048 andTP = 0.256 s.

Although perfect separation is not even theoretically possible
in under-determined cases, we have shown that exploitationof
the estimated (fat) channel matrix together with time-varying
Capon beamforming affords significant cross-talk reduction.
We have also constructed an adaptive solution that features
good tracking performance and low complexity. Finally, exten-
sive experiments with realistic and measured data have been
conducted to corroborate our findings, including a performance
comparison with two BSS algorithms from the state of the art,
in a large variety of mixing scenarios.
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