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Abstract— We present a frequency-domain technique based on We refer to [10] for a categorization of existing convoletiv
PARAIlel FACtor (PARAFAC) analysis that performs multichan-  BSS methods (see also Sectibh
nel Blind Source Separation (BSS) of convolutive speech mix Exploiting the non-stationary nature of speech signals, th

tures. PARAFAC algorithms are combined with a dimensionalty .
reduction step to significantly reduce computational compxity. BSS problem can be solved via the use of Second-Order-

The identifiability potential of PARAFAC is exploited to derive a  Statistics (SOS), assuming uncorrelated sources. Thas, th
BSS algorithm for the under-determined case (more speakers problem reduces to estimation of the mixing matrix that
than microphones), combining PARAFAC analysis with time- mjinimizes a measure of total cross-correlation. If the mixi

varying Capon beamforming. Finally, a low-complexity adafiive  gystam s stationary, the solution can be obtained by con-

version of the BSS algorithm is proposed that can track chanes ideri ltio] lation | hich vieldsoing
in the mixing environment. Extensive experiments with reastic >/ C€NG MUltiplé cross-correlation lags, which yi€iasan

and measured data corroborate our claims, including the undr-  Approximate-Diagonalization (JAD) problem [11, 12]. Swarh
determined case. Signal-to-Interference ratio improvemets of up  approach was proposed in, e.g., [13], for BSS of instantaneo
to 6 dB are shown c_ompared to state-of-t_he-art BSS al_gorithr:n mixtures, and in, e.g., [5,6, 8], for BSS of convolutive mix-
at an order of magnitude lower computational complexity. tures in the frequency domain. The main challenges towards
engineering pragmatic BSS algorithms for convolutive spee
l. INTRODUCTION mixtures in the frequency domain are the following:

. . . . .. i) Building a fast and robust separation algorithm that eslv
Blind Source Separation (BSS) aims to estimate multlp{ﬁe JAD problem for each frequency bin

source signals mixed through an unknown channel, usingii Dealing with under-determined cases, i.e., when the

only the observed signals captured by a set of sensors. Tr\% ber of sources exceeds the number of microphones. This

are diverse potential applications of BSS in various ar€dhtails identifiability issues and requires appropriatessstalk

including speech processing, telecommunications, biccaéd reduction techniques, which have not been properly adeldess
signal processing, analysis of astronomical data or iiatellto date in this context

imag((ejs,de.tc. In this t[))aper, we focus on I?SSh_of speech signal§y Efectively dealing with the frequency-dependent per
recorded in a reverberant environment. In this situationl-m . \i2vion "and scaling ambiguity problems.

tiple attenuated and delayed versions of each speakerl signqv) Dealing with non-stationary mixing environments, j.e.
are captured by each microphone, which results in a probl%laving the BSS problem adaptively

of blind separation of convolutive speech mixtures. This is In this paper, we propose original contributions for each

k_ey problem in application_s such as teleconfer_encing OF MB¥F these four challenges. First, we show that solving a JAD
Ellektelephgny, wher.e muIUpLe spea.kelrf ser[:aratlor) Orm?ﬂ,efi roblem for each frequency is equivalent to fitting a conju-
ackground separation can be crucial for human intelligybi gate symmetrigparallel factor (PARAFAC) model for each

and automatlg speech recognition. . . frequency. PARAFAC is a powerful multilinear algebra tool
BSS techniques usually assume certain properties on } P tensor decomposition in a sum of rahkensors. In this

sources or th_e mixing system and capl'_tallze on a Sep_arat@hse, PARAFAC is one possible generalization of the matrix
criterion that |mposes_the same properties on _the|r estignatg/p 1o higher-order tensors. PARAFAC was introduced in
In BSS of speech signals, a significant attribute that €] in 1970 and slowly found its way in various disciplines

be exploited is the inherent non-stationarity of such slignasuch as Chemometrics and food technology [15], exploratory

Speech signals are in fact considered to be non-stationgy, anajysis [16], wireless communications and array pro-
for durations greater that) ms [1]. Several BSS "_’llgor'thr_nscessing [17,18], and BSS [19,20]. In the context of this
that exploit non-stationarity have been proposed in them ,,her “exploitation of the algebraic structure of the PARGF
case of instantaneous linear mixtures, e.g., [2]. In theemqp,,ye| for each frequency allows a dimensionality-reductio

realistic case of convolgtive linear mixtures, time-doms, step before the separation stage. This results in a far lower
4] and frequency-domain [5-9] methods have been Proposg mplexity than state-of-art JAD techniques [5,6, 8], with
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tures, an analogous result was established in [20]. We gwp&imilarly, y(I : m) represents a selection of — [+ 1 samples
to build the de-mixing matrix by employing a time-varyingof the vectory, from thelth to themth.
Capon beamforming-based cross-talk reduction technanek,
demonstrate good performance for under-determined cases. [l. PROBLEM STATEMENT
The third contribution of this paper is a low-complexity
technique to deal with the frequency-dependent permlutatié' Data Model
problem. Our method consists of clustering the (properly Let us consider/ mutually uncorrelated speaker signals

scaled) estimated source profiles via theneansalgorithm, s(t) = [si(t),...,sr(t)]" captured byJ microphones and
after which the permutation matrices are estimated in deinglenote byx(t) = [z1(t),...,z,(t)]" the recorded mixtures.
step, in a non-iterative way. This clustering strategyltesna The noise-free convolutive model is written as follows
significant reduction of the complexity, compared to theyful L-1

iterative techniques proposed in [8, 21, 22], without aing x(t) =Hxs(t) = Z H()s(t —1), Q)
performance. 1=0

Fina”y, we derive an adaptive version of our batch b"nq/here* is the linear convolution operator. Thé x I ma-
speech separation algorithm, based on one of the adaptivegk H(l) represents the mixing system at time-lagIts
gorithms that we have developed in [23] to track a PARAFAglementsh, ,(I) are coefficients of the Room Impulse Re-
decomposition. This is important to track changes in thgonse (RIR) between souréeand microphonej, modeled
acoustic environment (e.g., due to speaker movement),tandd a Finite Impulse Response (FIR) filtet. denotes the
also yields complexity savings as a side benefit - thus bmigimaximum (unknown) channel length. To estimate the sources
the overall solution closer to practice. 8(t) = [31(t),...,31(t)]", the objective is to find ad x J

Preliminary results have appeared in conference form gpproximate inverse-channel mati#, such that
[24,25]. This journal version incorporates i) a much faster

. . .. . . K-1
separation algorithm, ii) a novel permutation-matchingoal i B
rithm, iii) a technique to deal with the under-determinedesa S(t) = Wxx(t) = Z W(k)x(t — k), @)
iv) an adaptive version of the algorithm, and v) extensive . .k:()
experiments. whereK is the length of the inverse-channel impulse response.

This paper is organized as follows. In Sectibnwe give To solve this problem, one can resort to a time-domain
the general formulation of the frequency-domain BSS proble@Pproach or a frequency-domain approach. In time-domain
in terms of JAD of a set of matrices for each frequency bin. @PProachesis’ should be chosen at least equal to the unknown
Sectionlll, we establish the link between the JAD formulatioffue channel ordel for all reflections to be modeled, and
and its equivalent PARAFAC reformulation and we report exnuch larger thanl, for accurate estimation. Time-domain
isting results concerning uniqueness of PARAFAC. In Sectignethods are sensitive to channel-order mismatch [10], and
IV, we explain our approach for batch computation of th@eir identifiability properties are not adequately untsod,
PARAFAC decomposition for each frequency bin. In SectiofsPecially in under-determined cases.

V, we explain how scaling and permutation ambiguities can Frequency-domain BSS methods begin by mapping the
be corrected. In Sectiovl, we address the under-determine@roblem to the frequency domain by applying the Discrete-
case and we show how a time-varying Capon beamformifigurier-Transform (DFT) on the observed signals:

technique can be employed for cross-talk reduction. Ini&ect = Hxs(t ~H 3

VI, we discuss an adaptive version of our batch algorithm. x(t) xs(t) = x(f,0) (£)s(f: ), ®)
SectionVIIlI reports numerical results, and Sectibt sum- where f is a frequency indexf = 1,...,F, ¢ is a frame
marizes our conclusions. index, x(f,q) = [z1(f,q),...,25(f,¢)]T and s(f,q) =

Notation.A third-order tensor of sizé x .J x K is denoted [s1(f,q),-..,s:1(f,q)]*. Theith column of H(f) represents
by a calligraphic letter), and its elements are denoted byhe spatial signature of théth speaker in the frequency
YVijk, ¢ = 1,....1, j =1,...,J andk = 1,...,K. A domain, at frequency. Note that the approximatior8) is
bold-face capital lettefY denotes a matrix and a bold-faceexact only for periodic signals(¢), or equivalently, if the
lower-case lettey a vector. The transpose, complex conjugatéime-convolution is circular. This approximation is sédisory
complex conjugate transpose and pseudo-inverse are dendte is significantly larger than the maximum lengthof the
by Y7, Y*, Y# and YT, respectively.| Y| ,. denotes the mixing channels [6]. To limit the circularity effect, a st
Frobenius norm ofY. The Kronecker product is denotedsmoothing approach is commonly used [26]. In practice, we
by ®. The Khatri-Rao product (or column-wise Kroneckewill compute the DFT of consecutive overlapping windowed
product) is denoted by, i.e., [ai,...,a;] ® [by,...,bs] = frames (a Hanning window will be used).

[a1 ® by, ...,a; @b;]. The P x P identity matrix is denoted = The main advantage of a frequency-domain approach is to
by I». E[] denotes the expectation operator. We will also ugeansform the initial convolutive time-domain model inteet

a Matlab-type notation for matrix sub-blocks, i.€A];.., ., Of instantaneous BSS problems, for which several efficient
represents the matrix built after selectionaf— [ + 1 rows algorithms have been proposed in the literature. Howeker, t
of A, from thelth to themth, andp — n + 1 columns of A, main difficulty with BSS in the frequency-domain is the need
from the nth to thepth. [A]. .., is used to denote selectionto cope with the permutation and scaling ambiguities, itee,

of all rows and[A];.,,.. to denote selection of all columns.mixing matrix is estimated up to an arbitrary permutatiod an



scaling of its columns for each frequency. Before convgrtirl, ..., N. For each sub-block of Np samples, we compute
the estimated source signals back to the time domain, tie F-point DFT of several consecutive overlapping frames
scaling ambiguity must be compensated and a permutatiofy, ¢) (each consisting o' temporal samples) with &-
matching procedure must be applied to associate the spegb@int window (typically a Hanning window). For instance, if
components belonging to the same source. Different methaedsienotes the overlapping factor (eq.= 0.75), then the
have been proposed to resolve the permutation ambiguity; seimber of overlapping frames within each sub-blacis
[10] for a recent survey. In Sectiov, we will propose a new Np—N
variation of the the permutation correction techniques- pro M LF—iNaJ
posed earlier in [8, 21, 22]. This yields significant comjitiex @
reduction relative to the fully iterative methods in [8,22], whereN, = |aF| is the number of samples in the overlap-
without sacrificing performance. ping segment. The sample autocorrelation matrix estinfiate,
Before proceeding further, we list our main assumptions:frequencyf and sub-blockp, is then given by
Assumption 2.1The speaker signals(t) are zero-mean,
mutually uncorrelated. " (fip) = 5 Zm 1 X(f, kpm + 12 kpm + F) (7
Assumption 2.2The number of speakerkis known, but X (fs kpam + 1 kpan + F),
not necessarily smaller than the number of microphofes wherek, ,, is a super-index that combingsandm as follows
Assumption 2.3The impulse responses of all mixing filters
are assurzed constant dEring the I?ecord’mgs ’ kpm = (p = DNp + (m — 1)(F — Na). )

(6)

Typical JAD-based techniques such as [5,6,8] require
B. Channel Estimation rank(H(f)) = I, for f = 1,..., F, therefore they cannot
. . , be employed in the under-determined cabe< I. In the
We consider that each recorded sigalt), j =1,...,J, following section, we show that each JAD systeB) tan

is a vector of V' samples. Let us divide the whole data bloclé uivalently be written as the PARAFAC decomposition of the
into P non-overlapping sub-blocks, such that each sub-blo ﬁgrd-order tensorR, (f) € C7*7*P built by stacking the
e

containsNp = L%J snapshots. These sub-blocks are index _ R, R ; h oth
by p = 1,..., P, and thepth sub-block corresponds to thel  Mmatrices (f;1),-..,Ra(f, P); one after each other

set of Np snapshots between instamts ; andt,. We denote along the third dimension. This PARAFAC-based reformula-
by Tp — Np the duration of each sub- block whef@ is thn was used in [20] for_ mstant_ane_ous mixtures. Its gener-
the sampllng frequency. Under this framework, tfiex .J allzat|o.n to convplved mixtures |mpI|es.that the PARAFAC_
autocorrelation matri®.(f,p) def o Ex(f,p)x"(f,p)] can model is now valid for each-frequency—bln. One major benefit
be written as P ’ ’ of the PARAFAC reformulation over the aforementioned JAD
techniques is that it does not necessarily requice I for the
R.(f,p) = H(/)R.(f,p)HZ(f), (4) mixing matrix H(f) to be unique (up to non-singular scaling
def _ and permutation of its columns).
where R (f,p) = E[s(f,p)s”(f,p)] is the autocorrela-
tion matrix of the speaker signals in thg¢h sub-block for 1. LINK TO THE PARAFAC MODEL
frequency-binf. Algorithms that exploit non-stationarity must
selectT’» such that the successive sub-blocks are uncorrelated
For speech applications, the sub-block duratign must be  In this section, we show that5) is equivalent to a
at least40 ms, as this is generally the lower bound for whiclPARAFAC model Each element of the tens®(f) is
speech is considered non-stationary [1]. The statistiegren denoted byrh Gap(f)ywithji=1,...,J,j2=1,...,J and

Reformulation of the problem

sufficiently different from one time-lag to another, suclatth p = 1,..., P. The elements OH(f) are denoted b)hj,i(f).
one can simultaneously exploit tHe sub-blocks, for a given We build therI matrix C(f) whose element on thgh row
frequency bin: andith column, denoted, ;(f), is theith diagonal element
B I of R4(f,p), i.e., the power spectral density of thi source
R.(f,1) = H(HR(f,1)HI(f), within the pth sub-block at frequency-bif. It follows that the
: : 5) elementsrgx)j »(f) can be written as a sum of triple products
R.(f,P) H(f)Rs(f, P)HY(f).

Since we assume mutually uncorrelated speaker signals, we j(f,)ﬁ,p th i(f)ep,i ()R, i (f)- 9)
postulate diagonal autocorrelation matrids(f, p), for f =
1,...,Fandp=1,..., P. Estimation ofH(f) thus resumes Eq. ©) is known as the conjugate-symmetric PARAFAC
to a JAD problem for each frequency-bin. decomposition of the tensoR,(f) and the number of
In practice, the exact autocorrelation matrides(f,p) are componentsl is the rank of this tensor [27]. By comput-
unavailable but can be estimated from the sampleg©f ¢t = ing the PARAFAC decomposition ofR,(f) independently
for each frequency-bin, we obtain the entire collection of

1if the number of speakers is unknown, it can be estimated dimed in frequency domain mixing matrice{éH(f) f=1 F} and
SectionIV-B. , RN
2If the mixing environment is varying, the BSS problem has ¢osblved source power SpeCtr%C( ) =1..., F}, up to frequency-

adaptively. This issue is addressed in Sectith dependent permutation and scaling of columns. In the next



section, we discuss the uniqueness conditions for corgugaf > I to solve 6). Note also that invoking uniqueness
symmetric PARAFAC, under which these matrices are idenfiroperties of PARAFAC is a way to prove explicitly that joint

fiable up to the stated indeterminacies. decorrelation of a set of matrices is a sufficient criterion f
unigue separation.
B. Identifiability In the next section, we discuss the batch implementation of

h is built f | £ th . the PARAFAC decomposition to separate the sources in the
The tensorR, () IS uilt rom € ement§ of the matr'cesfrequency domain, in a static mixing environment.
H(f) andC(f) combined as ing). The conjugate-symmetric

PARAFAC decomposition ofR,.(f) in Eg. ) is said to be
essentially uniquéf any other matrix pairH(f) and C(f) , ,
that satisfiesq) is related toH(f) and C(f) via A. Matrix Representation of the Tensor
. . Most of the algorithms designed to compute the PARAFAC
H(f) =H(/)HA1, C(f) = C(f)ITA, (10) decomposition of a tensor use the different matrix repriasen

with A;, A, diagonal matrices satisfying;A*A, = I; and tions of this tensor. In this paper, we will use the following
I1 a permutation matrix. Therefore, the ambiguities of thé” > P matrix representation oR., (f):
PARAFAC model are the same as in JAD formulation, i.e.,

IV. BATCH IMPLEMENTATION

H(f) and C(f) are estimated up to arbitrary scaling and Ra(Nlr-1)stjap = [Ra(F)jrgams (13)
permutation of their columns. The way these ambiguities cgg ji=1,...,J, 4o =1,....0 andp = 1,...,P. By
be corrected will be discussed in Sectign virtue of the conjugate-symmetric PARAFAC mod#., (f)

A first uniqueness result requires the notion of Kruskakrans |inked to the unknown matricéd(f) andC(f) as follows:
of a matrix [27].

Definition 1: The Kruskal rank or k-rank of a matrix H, R.(f) = [H(f)oH(f)IC"(f). (14)
denoted byky, is the maximum number such thatany set
of » columns ofH forms a linearly independent set. B. Computation of the PARAFAC decomposition

essential uniqueness of the conjugate-symmetric PARAFAGe PARAFAC model ofR,(f) optimally, an Alternating

decomposition9) is guaranteed [27,28]. _ Least Squares (ALS) algorithm is commonly used. The idea
Theorem 1:The decompositiord] is essentially unique if of ALS is to update these matrices in an alternating way
(s + ke = 201 +1). (11) at each iteration. We can tentatively ignore symmetry in the

model, i.e., treaH(f) and H(f) as independent variables.

It is worth noting that condition(l) is sufficient but not Conjugate symmetry of the data in4) ensures that there
necessary for identifiability. For a different uniquenesadi- s little loss of efficiency in doing so; in the end we can
tion, we assume that < P. In [29], a relaxed identifiability either use one of the two matrix estimates to ext#cyf),
condition for the conjugate-symmetric PARAFAC model hasr average out the two. We refer to [14,17,30] for further
been derived and is presented in the following theorem.  details on ALS. The advantage of ALS is that it works

Theorem 2:Suppose that the elements{ /) and C(f) under minimal (model identifiability) conditions; but it a
are drawn from a jointly continuous distribution. F < P be slow to converge when dealing with ill-conditioned data.
and An enhanced line search scheme can be inserted in the

I(I—1)  JJ—=1) (J(J—=1) J! ALS loop to speed up convergence, as proposed in [31] for
2 s 4 ( 2 “)ml{@x}v the real case and in [32] for the complex case. One can
(12) also resort to a Newton-type optimization technique such as
where ) the Levenberg-Marquardt algorithm [33]. Note also that the
1{ssay = { 0, !f J <4 7 complexity of these algorithms can be significantly reduogd
= L ifJ >4 a dimensionality-reduction pre-processing step [34]. theo
then H(f) and C(f) are essentially unique with probability Very efficient algorithm to compute the PARAFAC decomposi-
one. tion was proposed in [35] and used in [20, 36]. This algorithm

In our context,/ corresponds to the number of microphongdat we call '_DA?AFAC'SD (for “PARAFAC via Simultaneous
and! to the number of sources. The following Table gives thigidgonalization”) computes the PARAFAC decomposition of

upper bound forl such that 12) is satisfied, for different @ rankd tensorR € C”+*/2X’s via joint-diagonalization
values ofJ [20]: of a set of I symmetric matrices of sizé x I. It can be

applied only under the conditioh < min(Jy.J2,J3), where
J | 2 3 4 5 6 7 8 the roles of.J;, Jo and Js can be permuted. This condition
Imaz | 2 4 6 10 15 20 26 is often met in practice, where time is typically the longest
From this table, it is clear that the PARAFAC reformulatiomlimensionJ/s; of the observed tensor. Due to its high accuracy
of the frequency-domain BSS problem allows, in theorgnd low complexity, the PARAFAC-SD algorithm is a good
unique identification of the mixing matricdd(f), for f = candidate to solve the BSS problem in this paper. We now
1,...,F, even in certain under-determined cases. This isbaiefly describe the principle of this algorithm, as it apglio
major advantage over typical JAD techniques, which requicair particular context. Suppose that< min(J?, P), which




is a realistic assumption for the BSS problem. Let us comside V. SCALING AND PERMUTATION AMBIGUITIES

the matrixR,(f) € C”*" of Eq. (L4). If rank(H(f)) =  LetH(f) denote an estimate of the matlik(f). In the case
min(1, J), then by virtue of a Khatri-Rao product propertysf perfect estimation, these matrices are linked as follows
rank(H(f) @ H*(f)) = I. Under the assumptio® > I,

C(f) is generically rankt. As a consequenc®.(f) is rank- H(f) = H(/)D~(HTT(f), 17)

I and its reduced-size SVD can be written as whereII(f) is an unknown permutation matrix ada(f) an

unknown diagonal matrix. In order to compensate scaling and
permutation ambiguities, the task is now to estinfatg’) and

R.(f) = U(N)E(H)VI(S), (15)

whereU(f) € C7*1, 55(f) € R7*! is diagonal anaV (f) € TI(f).

CP*I, Note also that when the number of speakeisa priori

unknown, it can be estimated as the number of significafit Scaling Ambiguity

singular values ofR.(f), for a given f. The core idea of One possible approach to compensate the scaling ambiguity
PARAFAC-SD is to link (L4) and (L5). Given thatR,(f) is is the so-calledminimal distortion principle[26,38]. We
rank-/, there exists a non-singular mati#(f) € C'*/, such chooseD(f) as

that N
{RUHW = YOBOED g D)= diasl QUL (9
C(f) = Z7Y(HVI() whereQ € R7*7 is a matrix all of whose entries afg'.J and
S ] o diag(-) retains only the diagonal elements and makes the non-
Estimation of Z(f) is sufficient to compute the PARAFAC giagonal elements zero. This choiceldf f) can be interpreted
decomposition. ObviousiyC(f) = V*(f)Z~7(f). Also, the a5 follows. If () is full-column rank for every frequency
columns of H(f) © H*(f) are the vectors,(f) @ h;(f), bin, we can form the demixing matricéd’ (f) < Hi(f),

i =1,...,I, which are the vectorized representations of th L . .

] 7 ) =1,..., F. The mixing system is characterized at frequency
rank-1 matricesh;(f)h;" (f). As a consequencéy(f), i = by the following equation
1,...,1I, can be determined, up to a scaling factor, as the Ith y geq

singular vector associated with the largest singular vafuke x(f,q) = H(f)s(f,q). (19)
corresponding rank- matrix. The key point to findindz(f) i . .
is to impose thalJ(f)X(f)Z(f) has a Khatri-Rao structure. If we left-multiply both sides of 19) by W(f), we get

It was shown in [35] for the general un-symmetric PARAFAC 5(f,q) def W(f)x(f q)
decomposition thaZ( f) diagonalizes a set df symmetricl x ’ A
I matrices{M;(f),...,M;(f)} by congruence. For further = IL(f)diag|QH(f)]s(f, q)- (20)
details on the way these matrices are built, we refer to [2f.follows that
35, 36]. L

This reformulation has two major advantages over classical 50F,0) == hii(Hsum (F,q), 21
JAD-based BSS algorithms: i) PARAFAC is uniquely identi- (20) J ; silf)on () @D

fiable in certain under-determined cases (see Sedtie®), h q heth 1
thus proving uniqueness of the (estimated) channel matrix, \IN eresn(?(f, ‘fi’) enotes thet r::or_nponent oftI(/f)s(f, ﬁ)'
i) while usual JAD-based techniques jointly diagonalihe t n case of perfect separation, the interpretationad) s that

initial system ofP matrices of size/ x J, PARAFAC-SD fully the ith output of the BSS algorithm is the average of all

capitalizes on the strong algebraic structure of the PAR@FAQDSErvations of thdl(i)th source across the sensors, when

model to end up with a smaller JAD problem comprising all other sources are switched off. The task is now to esémat

matrices of sizel x I. The resulting complexity reduction ist,hhe permuAtatlon r.natgi:eE[(.f), f= 1;]' s ’hF’ such tk|1at the
very significant, even with short signals. Let us consider ‘§ CUtPUtsi(f, ¢) in (21) strings together the spectral compo-

simple example with/ — 4 microphones] — 2 speakers nents originating from the same sourgg;)(f, ) across all

and a short signal split intd® = 12 epochs. For each frequency bins.

frequency, instead of jointly diagonaliziri@ matrices of size

4 x 4, PARAFAC-SD jointly diagonalize@ matrices of size B. Permutation Ambiguity

2 x 2. With a large FFT length (e.gl024 is typical), the  The spectral alignment is a very challenging problemi If
complexity advantage over classical JAD methods becomgsirces are present, there &tg@ossible permutations for each
very pronounced. frequency bin, which yields a difficult combinatorial prebi.

The compacted problem for each frequency bin can IMany techniques to solve the permutation problem have been
solved by any JAD (or PARAFAC) fitting algorithm. Theproposed in the literature and we refer to [10] for a survey.
overall accuracy of PARAFAC-SD depends on the algorithi®everal techniques rely on geometric information, such as
used for this last step. In practice, we will use the extendedtimation of the Direction Of Arrival (DOA), see [26] and
QZ-iteration [37], as in the original paper [35]. references therein. Other techniques rely on the consigten

Once the PARAFAC-based separation stage is complete, tfethe filter coeffcients. The latter approach exploits prio
scaling and permutation ambiguities have to be correcteid. Tknowledge about the mixing filters and the solution can be
second stage is addressed in the following section. achieved by requiring the frequency resporidé¢f) of the



mixing filter to be continuous inf [39]. It is also possible correlation measures [21,22] or minimize distance measure
to impose smoothness of the demixing filter values in tH8] across thel! possible permutations for each frequency.
frequency domain. This is done in [6] by restricting thét this point, the clustering strategy is crucial. In [8, 22],
frequency domain updates of the demixing filter 2) {o have the centroids and the permutation matrices are updated in
a limited support in the time domain, i.eW(7) = 0 for an iterative way. For each iteration, the centroids are first
7 > K < F. Restricting the filter length may be problematizpdated as the average over all frequencies of the current
in highly reverberant environments where long separati@ource profiles. Then, the source profiles are permuted so
filters are necessary to take all reverberations into adcouas to match the current centroids, according to the chosen
It is mentioned in [6] that if a long demixing filter lengthmeasure (distance in [8] or correlation in [21,22]). Howgve
K is needed, one can choose an appropriately large frathe computation of this measure for thepermutations and”’
size F' such that the restrictiodl < F' due to the circular frequencies at each iteration entails a significant contjounal
convolution approximation still holds. However, large we$ cost.

of F significantly increase the overall complexity. Another In this section, we propose a more efficient clustering
category of permutation correction techniques exploitsppr strategy to avoid this problem. Unlike the aforementiongly f
erties of speech signals. One commonly exploited propsrtyiterative methods, the updates of the centroids and petiounta
the interfrequency correlation of speech signal envelj#@s matrices are not interleaved, which significantly redudes t
41], which is due to the nature of speech productidfor complexity. Our scheme can be summarized as follows:
instance, when the talker speaks louder, all spectral comi@ep 1. Computation of the centroids.

nents of the signal tend to increase in level, and vice-verszt us define thel x N; matrix T'(f) that collects thel
Based on this idea, several criteria and associated seguemtrofiles4;(f), i = 1,...,1. The FI x Ny matrix I results
adjustment strategies have been proposed to impose fregguefrom the concatenation of the matricﬁ‘:éf), f=1...F.
coupling between adjacent frequency bins, see e.g., [3/#. Since the profiles have been computed for overlapping frames
major drawback of sequential adjustment strategiesrisr T holds a set off'I points varying smoothly with time. The
propagation i.e., an error made in the permutation correctiotask is now to partition these points infoclusters. This can

at frequency binf may strongly affect the correction atbe done by application of themeansalgorithm onL’, which
following frequencies. To avoid this problem, one possiblgroduces a frequency independéent< N; centroid matrix
approach is to use a clustering-based method to estimat®fa= [m?,... m?]7. This centroid matrix is such that the
frequency-independent reference profile (or centroideich sum over all clusters, of the within-cluster sums of pomnt-t
separated source, and then permute, for each frequency, dhster-centroid distances is minimiZed

I frequency-dependent profiles such that they all matchStep 2. Finding the permutation matrices.

different reference profile. This clustering-based idesilteen For each frequency bin, we now look for tie I permutation
exploited in e.g., [8, 21, 22]. The three key ingredientshefse matrix II(f) such thatl(f)IL(f) matchesM, according to

clustering-based techniques are: the chosen measure. One possible option [8] is to solve
i) the defln!tlon of the. guantities that are clustered, .|tbe min ¢(f), f=1,...,F, 22)
source profiles (e.g., signal envelopes, log-power profty, I1(f)

i) the measure used to quantify the matching level between def . 9
the centroids and the profiles (e.g., correlation, distapt®), where¢(f) = HM - F(f)H(f)HF- Another option [21, 22]

and is to solve

iii) the clustering strategy. I

In [21], the profiled;(f,q) of a separated signal; is taken max Y _ p(my, [D(f)TI(f)].:), (23)
to be its enveloped;(f,q) = |%:(f,q)|- In [22], the profile nni=

4i(f. q) is a certairdominance measurén [8], the profile for where denotes the correlation coefficient. To soh&2)(or
the ith separated source is defined by its centered log-powgB), we compute the exhaustive set Bfmeasures for each
spectral density;; (f, q) = log[W.(f/)R.(f, )W/ (f)]. The frequency and retain the permutation matrix that corredpon
length V4 of the profiles is also an important parameter foio the best solutioh

clustering-based approaches to be accurate, especiasiiidot

signals. In practice, the profile$;(f,q) are computed for The main feature in our scheme is that only Step 1 is
overlapping frames over the whole signal. Once the profilggrative and 22) or (23) is solved only once. This a major
are computed, the task is to compute the centroids and

; ; ; S@r- 4The k-meansalgorithm also produces a list of indices that assigns each
perform CIUSte”ng' The underlylng assumption of clu ! of the F'T points to one of the clusters. This list may assign more (or less)

based approaches is that profiles coming from the same SoufiGg £ points to each of the clusters. We noticed through simulation results
but at different frequencies, are still more similar thapsi that the assignment is however generally very closé tpoints per cluster

from other sources. In order to associate each source proﬁﬂiﬁh confirms the validity of the aforementioned propertyspeech signals.
.Since we have to assign exactty points to each cluster, we only exploit the

to a centroid for each frequency, one can possibly maximizghiroid matrixM.
5To avoid the computation of! distances at each frequency, one can use a
deflationapproach. For a given frequency, the idea is to associateesnove
SAccording to the popular source-filter model of speech petidn, the the best-matching centroid-profile pair from the list of diglates, then repeat
excitation is filtered through a cascade of second-ordeillaiscs resulting the process. This greedy approach is of course suboptimalydrks almost
in strong spectral correlation [1]. as well in practice.



Criterion C1 Criteria C2 and C3
Clustering | Log-power profiles with a distance measure [8]C2: Dominance profiles with a correlation measure [22]
method C3: Envelope profiles with a correlation measure [21]
iterative O(FN;I* (1= 1Dn) O(FN{I(I+Dn+ FI2(I - Dn)
k-means O(FN;I’n+ FN;I?(I — 1)) O(FN;I°’n+ FN;I2 + FI*(I — 1))
TABLE |

COMPLEXITY OF THE DIFFERENT PERMUTATION CORRECTION SCHEMES: IS THE NUMBER OF ITERATIONS
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(a) Percentage of succeds= 5 sources,F = 2048. (b) CPU time,I = 5 sources,F’ = 2048.

Fig. 1. Performance of the three criteria C1, C2 and C3 inisglthe permutation problem, combined either with the oassg-meansclustering strategy
or the fully iterative strategy. Labels of the six histoggnrom left to right: (1) C1 with k-means, (2) C1 iterative3) (C2 with k-means, (4) C2 iterative,
(5) C3 with k-means, (6) C3 iterative.

advantage over the entirely iterative strategies used,i@1[8 be a very efficient solution to solve the permutation prohlem
22], where 22) or (23) are solved at each iteration. since its performance index is close 100 percent, even with
5 sources of2 seconds only. In comparison, the two other
C. Comparison between permutation solvers criter.ig (dominan_ce—profiles and envelope-profiles) argemo
In thi h th lexit q tsensmve to the signal length. As expected, the combinaifo
N this paragraph, we compare the compiexily an Qﬁjr k-meansbased clustering strategy with the three criteria
performance of the fOHOW'.ng criteria to solve the perr_’nutaé"OWS a very substantial reduction of the complexity, tieéa
gor: problem: (Cg clustering of Igg_—pO\éver grzt)fllels \;V'th %0 the entirely iterative approach. Based on these obsenst
:cs;mce_ measur f'IZ)’ as_tﬁropose Imt'[ ] (C2) %’S €MNYsince clustering the log-power profiles withkemeansbased
ot dominance-profiies with a correfation measu’ )( as strategy offers the best trade-off between complexity agrd p
proposgd in [22], (C3) clustering of enyelope-proflles V\Bfth formance, we will use this criterion after the PARAFAC-bése
correlation measure2g), as proposed in [21]. These Crltfa'separation stage in real BSS situations. In SecdbhH , we
will compare the performance of these different permutatio

ria are combined either with an entirely iterative clustgri
strategy, as in their original version, or with trlemeans correction criteria, applied after a PARAFAC-based sejpama

appro_ach_ we proposed. The pomplexity qrders of the diﬂere&age, in a real BSS situation.

combinations are reported in Table It is clear that the

clustering strategy that we proposed has a lower complexity

than its fully iterative counterpart. This results from themefit VI. UNDER-DETERMINED CASE

of only estimating the centroids in an iterative way, indted . ) )

interleaving updates of centroids and permutation matrice I.f H(f)is fuII-C(.)Iumn.rank for every frequen_cy bin, sepa-
In Fig. 1, we compare the performance of the differerf@tion can be achieved in the frequency-domairsby, ) =

permutation solvers applied to arbitrarily permuted \amsiof W (/)x(f, ), whereW(f) = HT(f) is obtained after cor-

thetrue source profiled’(f), i.e., we simulate the output of arection of scaling and_permutanon amk_)lgumes. The sdpdra

perfect separation stage. The residual frequency-indkggn Sources are then estimated by applying the Inverse DFT to

permutation is resolved by a column-matching proceduter af{s(/, ¢), f = 1,..., F'}. Alternatively, one can first compute

which we calculate the number of frequencies for wHitf) the demixing matrix flAIterW in the time domain, by taking

andI’(f) are perfectly aligned and we compute the percentage Inverse DFT Of{W(f% f=1..., F} after which the

of success. The latter is represented by Higfor I/ = 5 deconvolution operation of Eq2) may be efficiently com-

sources. The total execution time is also represented. Frism puted via an overlap-add procedure. The latter approadh wil

figure, it is clear that clustering the log-power-profiles®s to be used in practice.



In the under-determined case, the problem is more difficultacking one PARAFAC decomposition for each frequency, for
Under the uniqueness conditions reported in SectleB, which we have recently proposed efficient adaptive algorith
PARAFAC allows to identifyH(f) in a unique way, up to in [23].
scaling and permutation ambiguities. The latter are ctetec  Let us start with Eq. X4), which represents the PARAFAC
as explained in Sectiovi. However, the resulting matrid(f) model of the output autocorrelation tengog (f) € C/*7*P,
is not left pseudo-invertible and perfect separation isdfoge in terms of its matrix representatioR..(f) € Cr*xP_|f
not possible. In this section, we show that substantialeoln  the mixing matrixH(f) is varying between two successive
of crosstalk is still possible by using array processinghods, epochs, it has to be indexed by time and the observed
in particular a time-varying version of Capon beamformingutocorrelation matrix is now
First, we notice that for a suff|C|ent_Iy short sub-blopkt_he R.(f) = [H(,1)oH(f,1)c(f1),...,
probability that all sources have a high power spectral itiens (H(f, P) © H*(f, P)) ' (f P)} (27)
simultaneously is low For instance, iff — .J sources among ’ ' o
I have a long period of pause within sub-blggkthe under- wherec” (£, p) is thepth column of C™'(f). As a consequence,
determined problem almost resumes to/ a« J determined the PARAFAC model, and equivalently the JAD formulation,
problem for this sub-block. This suggests that cross-tatkic- remain approximately valid only if the mixing-matrE( f, p)
tion should be performed on a per-sub-block basis, to adcois almost constant over th€ consecutive time-lags. For a
for variations of cross-talk powers (note that our methaglfficiently short time-interval; = [t : tpyi—1], cOnsisting
automatically adjusts to these variationsdites notrequire of P successive time-blocks, we can thus write
actlv_lt)_//pause fjetectlen). The task is then to find a set of R (f, L) ~ [H(f, Ly) © H* (£, L)ICT (£, L), (28)
demixing matrlces{W(f,p), f=1,...,F,p=1,.. .,P},
such that cross-talk is reduced for each frequency and eadrere H(f, L) ~ H(f,k) ~ ... ~ H(f, P + k — 1) and
sub-block. This can be achieved by Capon beamforming. Fef (f, L) = [¢ (f,k),...,e" (f, P+ k —1)].

a given sourcé, a given blockp and a given frequency, we  The problem can now be summarized as follows:
look for a.J x 1 beamforming vecto&;(f,p) such that

. 1 Given estimates dH(f, L) and C(f, L), estimate
5i(f,p) = VAV%(faP){C(faP) H(f, Li4+1) and C(f, Ly+1) from the observed
= Wi (f,p)hi(f)si(f.p) (24) matricesR,,(f, L) and R, (f, Ly41).

preserves the first term and suppresses the second.fl—;(efé,
denotes théth column of H(f) after scaling and permutation
ambiguities correction. Iri2@), s;( f, p) results from the sum of
a signal of interest and cross-talk signals. The vestg(f, p)
that minimizes the Signal to Interference Ratio is the Cap
beamformer that solves

One possible solution to this problem is to apply a batch
PARAFAC algorithm repeatedly on the successive short4inter
vals L. Although the batch PARAFAC-SD algorithm proved
to be very fast compared to existing JAD techniques, its

aptive version would be very desirable. This is precisely

e essence of the PARAFAC-SDT (“PARAFAC via Simulta-
neous Diagonalization Tracking”) algorithm proposed i8][2

min W (f,p)Ra(f, p)Wi(f,p) st. w(f,p)h;(f) =1. PARAFAC-SDT solves 16) adaptively by tracking first the
wi(f:p) SVD of R.(f) before recursively updating(f) and H(f).

(25) : . .
The solution of this problem is For fur_thq details on th|s algonthm_, we refer_ to [23].
) In principle, an adaptive permutation solver is also ned¢ded
. R, f,p)hi(f) come up with a complete adaptive BSS solution. Thankfudly, a
wi(f.p) == = L (26) S , g : _ _
b7 (HRZ(f,p)hi(f) we explain in the next section, a side-benefit of trackinggisi

o ] PARAFAC-SDT is that updates are inherently incremental -
Capon beamforming is then applied at each frequency for eagls naturally preserving the correct permutation, predithat

source and each sub-block. the adaptive algorithm is properly initialized. Finallyete
exist adaptive implementations of Capon beamforming, and
VII. ONLINE IMPLEMENTATION these can be easily modified to derive a fully on-line solutio

In the previous sections, we considered a constant mixiHtpt is applicable in under-determined cases as well.
environment and we proposed a batch PARAFAC solution of
the frequency-domain BSS problem. However, in real-world VIII. SIMULATION RESULTS
situations, the mixing system can be considered as constantsimulation settings

only over short time intervals, due to speaker mobility, tiic In this Section, we illustrate the performance of the batch

ations in the environment, etc. Online adaptive BSS algorit and online PARAFAC-based algorithms developed in this

are therefore of great interest [3,42]. In this section, we er. The autocorrelation tensor is computed as explained
show that the adaptation of the batch PARAFAC-based B per. . . . P P i
SFtlonll-B, with a Hanning window and an overlap coeffi-

technique to the online case can be reduced to the prObIemC|ent fixed t075%. In the simulations conducted in this section,

6This is due to the time-varying spectral characteristicsgech sounds we compare our complete solution (_PARAFAC'SD SeDara_tlon
[1], e.g., naturally occurring pauses in speech. stage followed by k-means clustering of log-power profiles



to align the separated spectral components) to the publicl

available complete JAD-based batch BSS algorithms prapost 5 phan. ‘ ‘ ! ‘ |

i . —O— Parra

in [6] and [5], labeled as “Parra” and “Rahbar”, respectjvel o —&— Ratiar ]
—¥— PARAFAC-SD

Parra’s algorithm is tested with a demixing-filter of length
F/8, as in the original paper [6] Rahbar’s algorithm requires
the same input parameters as our algorithm, which allows
totally fair comparison. In experiments with = 2 sources
and J = 2 microphones, we will also compare our algorithm
to the JAD-based algorithm of [8], labeled as “Pham”, usec
with the optimal parameters found by preliminary simulato
(note that only the implementation for tieby 2 case was
found on the web for this algorithm).

We have collected a set of nine different signals, congjstin . .
of speakers (three females and six males) reading sentenc
during approximatel\30 seconds, with a sampling frequency
F, = 16 KHz. These signals are truncated to a chosen lengffg- 2. Impact of FFT length2 by 2 case,Tp = 0.25 sec,Tso = 130 ms.
varying from experiment to experiment. For the comparison
between algorithms to be fair, we average the performance

over ten random draws af sources chosen among the Ningye will use the SIR averaged over all sources as a single
collected. overall performance measure. The input SIR, i.e., the SIR

In the sequel, performance is assessed in a wide varietygpfained without any processing, will also be given as a
operational scenarios. In SectioW#l-C andVIII-D, we use paseline.

real recordings of RIRs, resulting from experiments coneldic

in the context of hearing aid design [43], wi2hmicrophones. )

In SectionVIII-E , we use the RIRs measured by A. Westner ify- EXPeriment 1: two by two case

a conference room [44]. In SectioMsll-F, VIII-G and VIII- In this first experiment (Figs2 and 3), we compare the
H, we use artificial RIRs generated by the method proposdifferent batch algorithms withh = 2 sources and/ = 2

in [45], in order to study the impact of several parametersicrophones. We have used real recordings of RIRs, regultin
such as the reverberation time or the location of sources d@noim experiments conducted in the context of hearing aid

10 11
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Iog2 of FFT length

microphones. design [43]. The chosen room is a semi-reverberant classroo
with dimensions17/10” by 32’9” by 88" (named PC335 in
B. Performance Evaluation the database). The reverberation tiffig is around130 ms.

These recordings allow to choose between different positio

, of the speakers on a circle around the microphones by satecti
. ' of angles betweef® and338°. The radius of the circle i8’.

sit) = ZW” *2j(t). (29 The sgignal duration is fixed t60 s and the duration of each

=1 sub-block isTr = 0.25 s, i.e., the recordings are partitioned
The output SIR fors;(¢) is defined as the ratio of the powerin p = 40 segments. Performance is averaged éveifferent
of the portion ofs;(¢) coming from source, ;;(¢), to the pairs of positions, one source being fixed (&t while the

From Eg. @), the separated sources are given by

power from cross-talk signal&y (t) [7]: second is successively positioneddaf, 90°, 135°, 180° and
82(t) 225°. As mentioned previously, performance is also averaged
SIR; = 10log="—"4—. (30) over ten random pairs of sources.
Do Zk¢i 85.(1)

In Fig. 2, we illustrate the impact of the FFT length

In the experiments of this section, we will convolve speech the output SIR. The average input SIR was.1 dB in
signals with pre-measured real-world or artificially geated this experiment. It turns out that PARAFAC-SD and Pham’s
RIRs, so we have access to the microphone signal§), algorithms achieve similar SIR and outperform Rahbar’s and

J =1,...,J, recorded when only théh source is present. parra’s techniques. Comparison of execution times (natsho
Therefore, we calculate the SIR for sources’ here) revealed that PARAFAC-SD was betweenand 2
7 decades faster than the three other batch algorithms.
SIR; = 10log ) (ijl Wi *zﬁ(t)) @) . In Fig. 3, we test the four algorithms on truncated record-
S (Zg Wi %1 ,(t))Q ings, W_hos_e duration is varying froms to 10 s. The FFT
b okti \2ej=1 THG TN length is fixed toFF = 2048. Figs. 3(a) and3(b) represent

"Preliminary results with other filter lengths have showrt thd8 offers evolution of the ouiput SIR and execution time, respegivel
the best performance in most (but not all) of the cases cereidin this FOr @ short signal (between s and4 s), our method sub-
section. stantially outperforms Parra’s and Rahbar's techniques$ an

®In the under-determined case where Capon beamforming dsarse per- - glightly outperforms Pham’s method. This results from the
sub-block basis, the inverse filter varies across sub-blockthis caseSTR; h .
is computed in a similar way, except that (t) and 5% (¢) in (30) are built Combmat'on of a fast and accurate PARAFAC-based sepa-
by concatenation of their successively estimated subkbloc ration stage, followed by a fast and accurate permutation
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Fig. 3. Impact of signal duratior? by 2 case,F = 2048, Tp = 0.25 s, Tgo = 130 ms. (a) Evolution of SIR. (b) Evolution of execution time.
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—#¢— Batch PARAFAC 151 p

S1 is instantaneously
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or ]
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Fig. 4. Performance of PARAFAC-SDT algorithm in tfeeby 2 case. Fig. 5. Performance of PARAFAC-SDT algorithm in tieby 2 case.

F = 1024, Tp = 0.128 s, Pinit = 15 (~ 2 8), Teo = 70 ms. Average F = 1024, Tp = 0.128 s, Pijpit = 15 (~ 2 °s), Tgo = 70 ms.
Input STR = —1.82 dB. Static environment. Speakers positionedatnd Varying environment. Evolution of output SIR for each spEalSequence 1:
90°. Evolution of SIR vs. signal duration (average oué€r random pairs of initialization with batch PARAFAC-SD orP;,,;+ = 15 sub-blocks, speakers
sources). Comparison between batch PARAFAC and online FZ¥RASDT  positioned at0° and 90°. Sequence 2: online mode, positions are the same
(with or without solving the permutation problem at eachpsté the online as in Seq. 1. Sequence 3: speaker 2 keeps the same positite spdaker
mode). 1 is moved instantaneously. Average IngifR = —1.65 dB for Sequences

1 and 2, and-2.48 dB for Sequence 3.

correction scheme, which proved to work well even with short

signal,s (see SectiovtC). From4 seconds, PARAFAC-SD and r5om pC323c from the same database [43], With 2 sources
Pham’s algorithms perform similarly, and outperform Raf®a 5,47 — 92 microphones. The reverberation tiffig, is around

and Parra’s algorithms. Note that PARAFAC-SD is alway$) ms. The FFT length is fixed t&" = 1024 and the epoch
faster than the three other algorithms, and becomes mute fag, ,ration toTp = 0.128 s.

when the signal duration increases. The signal duration ha
little impact on the execution time of the PARAFAC—baseg
separation stage since the latédwaysreduces the dimension

In Fig. 4, the mixing environment is constant. We com-
are the performance of the batch PARAFAC-SD algorithm
: . . . applied repeatedly on signals of increasing length to that o
of the problem to a set af matrices to jointly diagonalize (the its online counterpart (PARAFAC-SDT), used with a sliding

number of matrices to diagonalize is reduced frém= 40 . . .
: ) . ._exponentially decaying window of lengtt) sub-blocks and
to P = I = 2 in this experiment). Of course, the execution P y ying g

time of the global solution shown in Fi@(b) increases with alg;?)rr?tﬁtrfwl?gvczcr?;:/:glljoat![etg-t?]e(S:v?)I[uzt?gnfz; t(:]eetaSlIIsR(;r:/etgz e
time_, since_ the pe_rmutation correction scheme has to dusg?/er both .users and ten random pairs of sources. For a given
profiles of increasing length. sub-blockp, the SIR of a given user is computed by E§1)
. . whereW ; is substituted by its estima®/,; (p) for this block
D. Experiment 2: Adaptive PARAFAC and z;;(t) and z;(¢) consist of all available samples (i.e.,

In this second experiment (Figé.and5), we illustrate the pNp samples) of the recorded signals up to fitb block.

performance of the online PARAFAC-SDT algorithm. We useBARAFAC-SDT is initialized with the mixing matrix estimate
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by batch PARAFAC-SD applied on the firgt,,;; = 15 sub-

blocks (i.e., approximatel§ seconds). Then, PARAFAC-SDT —#— PARAFAC-SD
. - . . . —e—Parra
is combined with one of the two following options for the a}| —O— Ranbar

rest of the recording: (O1) the permutation problem is gligba
resolved for each new block (after the recursive updates) b
taking into account all previous blocks; or (O2) it is never
solved in online mode. From Fid, it is clear that both options
yield similar performance. The reason is that PARAFAC-SDT
recursively updates the new matrices explicitly as a fuaomcti
of the old estimates, such that the tracking stage does n
introduce new arbitrary permutations. Consequently,esthe
frequency-dependent permutation problem is well solved i
the initialization step (this is due to the effectiveness ol s 7
the permutation correction scheme for short signals), it i

not necessary to solve it again in online mode. From this

first observation, we deduce that the small performance g & Westners RIRs recordings. Impact of FFT length= 3 sources,
(around 1 dB only) between batch PARAFAC-SD and its’  ° microphonesTy = 0.5 . Tgo = 300 ms. InputSTk = —2.8 dB.
online version results from the separation stage only. @n th

other hand, PARAFAC-SDT has a much lower complexity thar 10

SIR [dB]

i
11 12

8 9
Iog2 of FFT length

. . . —3¥¢— PARAFAC-SD
its batch counterpart [23]; it was on avera2f@times faster —©— rara
than PARAFAC-SD in this experiment. 8| —O— Ranbar

In Fig. 5, we illustrate the tracking capability of PARAFAC-
SDT. During the first5 seconds, the sources are fixed at
90° and 0°, respectively. After5 seconds, the first source is
instantaneously moved fror®0° to 135°, while the second
source is kept fixed. The SIR of each speaker was compute
as follows. In the first sequence (initialization) 8f,,;; = 15
blocks, we applied the batch PARAFAC-SD algorithm, and the P
SIR of each user resulting fron31) is replicatedP;,,;; times
in the figure. In the second sequence (online mode betwee s, ‘ ‘ ‘
t = 2 s andt = 5 s), both users have the same position as ® ® Number of microphones 8
in the first sequence, and we compute the SIR as before.
the third sequence, SIR for the second speaker (who remaf%.s 7. Westner's RIRs recordings. Impact of the number afraghones.
in the same position) is computed on the whole data up 1e= 3 sourcesTp = 0.5 s, F = 4096, Tso = 300 ms. InputS IR between
present time, whereas SIR for the first speaker (who moves?5 dB and—1.46 dB, depending on the value of.
instantaneously at = 5 sec) is only computed over samples
corresponding ta > 5 s. The key point is that the update of . . .
the demixing filter for this speaker does not exploit the tiene? h!ghly reverberant environment. The du_ratlon of the semirc
of a “good” initialization (with batch PARAFAC-SD), since 'S fixed to 10 seconds and performance is averaged dver

= : : random draws of the sources.
the mixing-environment has been instantaneously chanjed. In Fig. 6, we illustrate the impact of the FFT length with
observe that afted sub-blocks (about half a second), thg _ 3 s.ou,rces and/ — 6 sensors. As observed in the
SIR of the first speaker reaches a level close to its initigl _2 PARAFAC-gD toerf ' Parra’ d Rahbar
value, which illustrates the very good tracking capabibfy y = case, oulpertorms arras and Rahbars

the PARAFAC-SDT algorithm. Note that this good tiackind®hi04S I 1ers of output S1&, n terms of execuion fime
capability is also illustrated in [23], in a completely @ifent PP

. . . . algorithm and100 times faster than Rahbar’s algorithm.
(r:;)(;l;(re):;;zﬁlq()mgthetrajectorles of multiple targets MBMO In Fig. 7, F is fixed to4096 and we illustrate the impact

of the number of microphones, with= 3 sources. Contrary
to Parra’s and Rahbar’s techniques, PARAFAC-SD achieves
E. Experiment 3: Highly reverberant environment “satisfactory” separation quality with onlg microphones.

. : ; hen J increases, the quality of separation improves for the
Although the database used in the first two experimen X )
provides real world RIRs recordings, it is limited b — 2 three algorithms but PARAFAC-SD yields the best output SIR.

sensors only, since it was built in the context of hearin _ )

aid design [43]. In this third experiment, we use the RIRS Experiment 4: Under-determined case

measured by A. Westner in a conference room of 3izenx 7 In this fourth experiment (Fig8), we consider under-
mx3 m, with 8 microphones [44]. The duration of these RIRsletermined cases and we Iillustrate the performance of
is 750 ms, such that the full room acoustics is captured, and tRARAFAC-SD algorithm followed by Capon beamforming, as
reverberation timdg, is around300 ms, which characterizes described in SectioX1. The sources havd) seconds duration
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N

()
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S e
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—3¥— Determined case, PARAFAC-SD, |=4, J=4 —3¥¢— Determined case, PARAFAC-SD, I=5, J=5
Determined case, Rahbar, 1=4, J=4 143 + Determined case, Rahbar, 1=5, J=5
Determined case, Parra, 1=4, J=4 —e— Determined case, Parra, 1=5, J=5

12 —f3— Underdetermined case, PARAFAC-SD+Capon,1=5,J=4|

20

¢ —E— Underdetermined case, PARAFAC-SD+Capon, 1=4, J=3|

15

SIR [dB]
SIR [dB]

0.1 0.15 0.2 0.25 0.3
T (sec.
60 (58C) (a)

(b)

Fig. 8. Performance of PARAFAC-SD followed by time-varyi@@pon beamforming in the under-determined cdse; 2048, Tpr = 0.256 s.
Comparison with the determined case with PARAFAC-SD, PawaRahbar’s algorithms. Input /R between—2.02 dB and—4.84 dB, depending on the
value of Tgo. (a) I = 4 sources. (b)Y = 5 sources.

and they are convolved with artificial RIRs, generated by thbe exactly determined cases can be quite small for PARAFAC-
method proposed in [4%] Artificial RIRs generators allow to SD + Capon, see Fig(b). Additional experiments for chal-
test BSS algorithms in various situations, since the dino@ss lenging under-determined cases can be foundhtatp: //
of the room, the locations of the sources and microphones amaw. t el ecom t uc. gr/ ~ni kos/ BSS_Ni kos. ht mi .
the reverberation time can be freely chosen. In this exparim
the dimensions of the chosen room &rmx5 mx2.3 m. The
RIRs are generated fdr= 5 sources and = 5 microphones.
The z and z coordinates of thé sources are fixed t@ and  In this fifth experiment (Fig9), we compare the perfor-
1.6, respectively, while thg coordinates arél1, 1.5,2,2.5,3}. mance of the three batch algorithms as a function of the
Thez andz coordinates of thé sensors are fixed tband1.6, locations of the sources and the microphones. The number
respectively, while the coordinates ar¢1,1.4,1.8,2.2,2.6}. of sources isl = 2 and the number of microphones= 6.
F is fixed to 2048 and Tp to 0.5 s. The performance is Performance is averaged oviérrandom draws of the sources.
averaged ovei(0 random draws of the sources. As in the previous section, we use artificial RIR’s [45]. The
In Fig. 8(a), only the firstt sources have been mixed and wéize of the room id2 m x 9 m x 3 m and the reverberation
represent the evolution of the SIR averaged over all sowsedime is fixed t07s, = 200 ms. The signals havé seconds
a funtion of the reverberation tin&;,, in the two following duration.
situations: In a first scenario (Fig9(a)), we observe the impact of
i) The first 4 microphones are used. In this exactly detethe distance between the microphones. PARAFAC-SD signif-
mined case, the estimated mixing matrix is invertible arel tficantly outperforms Parra’s and Rahbar’s algorithms. When
same demixing filteW ; is therefore used for all sub-blocks.the distance between microphones increases, the perfoeman
The performance of PARAFAC-SD, Parra’s and Rahbar® the three techniques improves. This was expected, since
algorithms is plotted. increasing this distance decreases the correlation betwee
||) The first 3 microphones 0n|y are used. In this undeﬁhe different RIRs, which in turn, makes the simultaneous
determined case, the mixing matrix is first estimated bjiagonalization problem better conditioned.
PARAFAC, after which the demixing filter;;(p) are es-  In a second scenario (Fi§(b)), we proceed similarly, but
timated by Capon beamforming for each sub-block. this time we vary the distance between the sources. We abserv
In Fig. 8(b), we proceed similarly to compare ttieby 5 that the separation performance improves when this distanc
exactly determined case to theby 4 under-determined case.increases, up to a certain point. Notice also that PARAFAC-
As a conclusion, though the separation quality naturalfyD works very well (giving SIR ofi2 dB) when the sources
decreases with an increasing reverberation time, PARAFA@&L only20 cm apart.
SD (followed by Capon beamforming) performs very well In a third scenario (Fig9(c)), we observe the impact of
in the under-determined case. In particular, it signifisantthe distance between sources and sensors. Again, PARAFAC-
outperforms Parra’s and Rahbar's techniques even when $Ha significantly outperforms Parra’s and Rahbar’s algargh
latter two are given the benefit of using one more microphon&hen the sources are getting closer to the microphone array,
thus operating in the exactly determined regime. This {§e performance of the three algorithms improves. This was
indicative of the strengths of the proposed approach. Iisis a €xpected since the convolutive mixing problem is then getti

worth noticing that the gap between the under-determined afloser to a simpler instantaneous mixing problem (one dom-
inant direct path with high energy, relatively to the reféstt

%nttp://home. tiscali.nl/ehabets/rir_generator. htn paths).

G. Experiment 5: variable source and microphone positions
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Fig. 9. Impact of sources and sensors locatiohs= 2 sources,J = 6 microphones.F" = 2048, Tp = 0.256 s. Room of sizel2 m x 9 m x 3 m,
Teo = 200 ms.

(@) Impact of inter-microphone distance. Sourc&, 1,1.6), (2,2,1.6)}. Microphones:{(11, (j — 1)dm + 1,1.6)},=1,....6, With distanced,,, varying
from 0.1 m to 0.5 m. Average InputSIR = —2.56 dB.

(b) Impact of inter-source distance. Sourcé, 1,1.6), (5,1 +ys, 1.6)}, with ys varying from0.2 to 5. Microphones{(8,0.3(j —1) +1,1.6)};=1,....6-
Average InputSIR = —3.02 dB.

(c) Impact of the distance between sources and microphoBesrces:{(zs,1,1.6), (zs,2,1.6)}, with zs varying from 2 to 10.5. Microphones:
{(11,0.3(j — 1) + 1,1.6)}j—1,...,c. Average InputSIR = —2.72 dB.

H. Experiment 6: Comparison of permutation criteria

20

In this last experiment (Figl0), we apply the different T iiiii?i;is
permutation-correction criteria proposed in SectiéB after .l T O Serave
a PARAFAC-SD separation stage, for varying reverberatiol \"\ —6—22 nerative
times. The room has the same dimensions as in the previol 3 G [ P
experiment. The number of sourceslis= 3, and the number T B L Ty =
of microphonesJ = 8. The signal duration iS5 s. The = G"‘\@,_ b - &
coordinates of the sources afe0,1,1.6), (10,2,1.6) and st TTem--me---Biiignii g
(10,3,1.6). The = and z coordinates of the3 sensors are
fixed to 11 and 1.6, respectively, while they coordinates ol |
are {1,1.2,1.4,1.6,1.8,2,2.2,2.4}. It can be observed that
criteria. C1 (clustering log-power profiles with a distance .

i i
0.4 0.45 0.5

measure) and C2 (dominance profiles with a correlation me 02 025 03

sure) yield similar performance and outperform criterio® C

(envelope pr(_)flles with a_ Correla_tlon measure)' ThIS Comclml:lig. 10. Comparison between several permutation correctiteria after the

the observations made in Sectid®hC. Computation of C1 same PARAFAC-SD separation stage= 3 sources,/ = & microphones,

and C2 via thek-meandiased approach we proposed yield§ = 2048 and7p = 0.256 s.

performance that is similar to the entirely iterative chuitg

strategy, but th&-meansstrategy has a far lower complexity o ) .

(see Tabld). Although perfect separation is not even theoretically jibas
Several additional experiments (including challengin\% under-determined cases, we have shown that exploitafion

under-determined cases and speech-music mixtures) dte aVge estimated (fat) channel matrix together with time-irzgy
able atht t p: / / www. t el ecom t uc. gr/ ~ni kos/ BSS_  Capon beamforming affords significant cross-talk reductio
Ni kos. ht i . ~  We have also constructed an adaptive solution that features
good tracking performance and low complexity. Finallyesxt
sive experiments with realistic and measured data have been
conducted to corroborate our findings, including a perforoea
In this paper, we have proposed a PARAFAC-based agemparison with two BSS algorithms from the state of the art,
proach to solve the BSS problem for convolutive speedh a large variety of mixing scenarios.
mixtures in the frequency domain. Our approach is very
competitive, since it provides better separation perfaorcea
at much lower complexity relative to the state-of-art. Tehes
benefits come from combining a fast and accurate PARAFAE! IE R?‘bi”zr If‘”ldg?z- Schafeigital Processing of Speech Signals
. . . .. rentice-Hall, .
algomhm for the sep_aratlon Sta_ge’ with an efficient frenwe [2] D.-T. Pham and J.-F. Cardoso, “Blind separation of in&aeous mix-
dependent permutation correction scheme. tures of non-stationary sources,” Rroc. Int. Workshop on Independent
Contrary to earlier work in blind speech separation, the EPrI“pgn‘;’c‘)tog”a'ySilssj‘”fgg””d Signal Separation (ICA'G8glsinki,
link to PARAFAC allows estimation of the mixing matrix M ht et S A

' ) ) ) R, R. Aichner, H. Buchner, S. Araki, and S. Makino, “On-litime-domain
in under-determined cases - therepi®of of identifiability. blind source separation of nonstationary convolved sighai Proc. Int.

0.35
Teo (sec.)

IX. CONCLUSION

REFERENCES



Workshop on Indep. Comp. Analysis and Blind Sig. Separétoa'03),
2003, pp. 987-992.

[27]

[4] A. Gorokhov and P. Loubaton, “Subspace Based TechnifpreSecond

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

(23]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Order Blind Separation of Convolutive Mixtures with Temally Cor-
related Sources,JEEE Trans. on Circuit and Systemegol. 44, no. 9,
pp. 813-820, 1997.

K. Rahbar and J.-P. Reilly, “A frequency domain methoditind source
separation of convolutive audio mixtureslEEE Trans. on Speech
and Audio Processingvol. 13, no. 5, pp. 832-844, 2005. [Online].
Available: http://www.ece.mcmaster.ca/~reilly/kamran/id18.htm

L. Parra and C. Spence, “Convolutive blind separation rafn-
stationary sources,|EEE Trans. on Speech and Audio Processing[31]
vol. 8, no. 3, pp. 320-327, 2000. [Online]. Availablenttp:
/lida.first.fhg.de/~harmeli/download/download_corshsml

C. Serviére and D.-T. Pham, “Permutation correctionha frequency
domain in blind separation of speech mixtureEURASIP J. Appl.
Signal Proc, no. 1, pp. 1-16, 2006.

D.-T. Pham, C. Serviére, and H. Boumaraf, “Blind separabf speech
mixtures based on nonstationarity,” Rroc. of ISSPA’03vol. 2, 2003,
pp. 73—76. [Online]. Availablehttp://www.lis.inpg.fr/pages_perso/bliss/ [34]
toolboxes/bssaudio-demo.tar.gz

N. Mitianoudis and M. Davies, “Audio source separatidnconvolutive
mixtures,”|[EEE Trans. on Speech and Audio Processia. 11, no. 5,
pp. 489-497, 2003.

M. S. Pedersen, J. Larsen, U. Kjems, and L. C. Parra, ‘Wesu of
convolutive blind source separation methods, Sipringer Handbook of
Speech Processing Springer Press, 2007. ]
J.-F. Cardoso and A. Souloumiac, “Blind beamformingrion Gaussian
signals,” Radar and Signal Processing, IEE ProceedingsvBl. 140,
no. 6, pp. 362-370, 1993.

A. Yeredor, “Non-orthogonal joint diagonalization the least-squares
sense with application in blind source separatidBFE Trans. on Signal
Processingvol. 50, no. 7, pp. 1545-1553, 2002.

A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and EoWines, “A
blind source separation technique using second ordestitafl IEEE
Trans. on Signal Processingol. 45, no. 2, pp. 434—444, fev. 1997.
R. A. Harshman, “Foundations of the PARAFAC procedWedel and
Conditions for an ‘explanatory’ Multi-mode Factor Analysi UCLA
Working Papers in Phoneticsol. 16, pp. 1-84, 1970.

A. Smilde, R. Bro, and P. GeladMulti-way Analysis. Applications in
the Chemical Sciences Chichester, U.K.: John Wiley and Sons, 2004.

P. KroonenbergApplied Multiway Data Analysis Wiley Series in [41]
Probability and Statistics, 2008.

N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “BlindARAFAC
Receivers for DS-CDMA Systems[JEEE Trans. on Signal Prog.
vol. 48, pp. 810-823, 2000.

N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “PaghlFactor
Analysis in Sensor Array ProcessingEEE Trans. on Signal Proc.
vol. 48, pp. 2377-2388, 2000.

P. Comon, “Blind Identification and Source Separation 2 x 3
Underdetermined Mixtures/EEE Trans. on Signal Progcvol. 52, no. 1,
pp. 11-22, 2004.

L. De Lathauwer and J. Castaing, “Blind identificatioh umderdeter-
mined mixtures by simultaneous matrix diagonalizatiofEEE Trans.
on Signal Proc.vol. 56, no. 3, pp. 1096-1105, 2008.

H. Sawada, R. Mukai, S. Araki, and S. Makino, “A Robustdrecise
Method for Solving the Permutation Problem of Frequencyram
Blind Source Separation|EEE Trans. on Speech and Audio Processing
vol. 12, no. 5, pp. 530-538, 2004.

H. Sawada, S. Araki, and S. Makino, “MLSP 2007 Data AsayCom-
petition: Frequency-Domain Blind Source Separation fon@tutive
Mixtures of Speech/Audio Signals,” iRroc. MLSP20072007, pp. 45—
50.

D. Nion and N. D. Sidiropoulos, “Adaptive Algorithms forack the
PARAFAC Decomposition of a Third-Order TensolEEE Trans.
Signal Proc, vol. 57, no. 6, pp. 2299-2310, 2009.

K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos, iti&l Speech
Separation Using Parafac Analysis and Integer Least SsliameProc.
ICASSP 06vol. 5, 2006, pp. 73-76.

K. N. Mokios, A. Potamianos, and N. D. Sidiropoulos, “@re Effec-
tiveness of PARAFAC-Based Estimation for Blind Speech &atjmn,”

in Proc. ICASSP 082008, pp. 153-156.

R. Mukai, H. Sawada, S. Araki, and S. Makino, “Frequeimgymain
Blind Source Separation of Many Speech Signals Using Nigdd-Rnd
Far-Field Models,EURASIP Journal on Applied Signal Processiugl.
2006, pp. 1-13, 2006.

(28]

[29]

(30]

(33]

[35]

[37]

(38]

[39]

[40]

[42]

[43]

[44]

[45]

14

J. B. Kruskal, “Three-way Arrays: Rank and UniquenessTolinear

Decompositions, with Application to Arithmetic Complexiand Statis-
tics,” Linear Algebra Appl.vol. 18, pp. 95-138, 1977.

A. Stegeman and N. D. Sidiropoulos, “On Kruskal's urégass con-
dition for the Candecomp/Parafac decompositidriti. Alg. Appl, vol.

420, pp. 540-552, 2007.

A. Stegeman, J. ten Berge, and L. De Lathauwer, “Sufficenditions
for uniqueness in Candecomp/Parafac and Indscal with raraompo-
nent matrices,Psychometrikavol. 71, pp. 219-229, 2006.

R. Bro, “PARAFAC: Tutorial and Applications,Chemom. Intell. Lab.
Syst, vol. 38, pp. 149-171, 1997.

M. Rajih and P. Comon, “Enhanced Line Search: A Novel héet to

Accelerate PARAFAC,” inProc. Eusipco’05 2005.

] D. Nion and L. De Lathauwer, “An Enhanced Line Searchebed for

Complex-Valued Tensor Decompositions. Application in OBMA,"
Signal Proc, vol. 88, no. 3, pp. 749-755, 2008.

G. Tomasi and R. Bro, “A Comparison of Algorithms for tifig the
PARAFAC Model,” Comp. Stat. Data Analvol. 50, pp. 1700-1734,
2006.

L. De Lathauwer and J. Vandewalle, “Dimensionality Retibn in
Higher-Order Signal Processing and Rami; 2, ..., ) Reduction
in Multilinear Algebra,”Lin. Alg. Appl.,Special Issue ohinear Algebra
in Signal and Image Processingol. 391, pp. 31-55, Nov. 2004.

L. De Lathauwer, “A Link between the Canonical Decomipios in
Multilinear Algebra and Simultaneous Matrix Diagonalizat” SIAM
J. Matrix Anal. Appl, vol. 28, no. 3, pp. 642—-666, 2006.

L. De Lathauwer and J. Castaing, “Tensor-Based Teclesigfor the
Blind Separation of DS-CDMA signals,Signal ProcessingSpecial
IssueTensor Signal Processingol. 87, no. 2, pp. 322-336, 2007.
A.-J. van der Veen and A. Paulraj, “An Analytical CongtaModulus
Algorithm,” IEEE Trans. Signal Pro¢vol. 44, pp. 1136-1155, 1996.
K. Matsuoka and S. Nakashima, “Minimal distortion mijple for blind
source separation,” ifProc. Int. Workshop on Indep. Comp. Analysis
and Blind Sig. Separation (ICA'01001, pp. 722-727.

D.-T. Pham, C. Serviére, and H. Boumaraf, “Blind sefiaraof convo-
lutive audio mixtures using nonstationarity,” Proc. Int. Workshop on
Indep. Comp. Analysis and Blind Sig. Separation (ICA'GZ)03, pp.
981-986.

J. Anemiiller and B. Kollmeier, “Amplitude Modulation €8orrelation
for Convolutive Blind Source Separation,” iAroc. Int. Workshop on
Indep. Comp. Analysis and Blind Sig. Separation (ICA @000, pp.
215-220.

N. Murata, S. lkeda, and A. Ziehe, “An Approach to Blindusce
Separation Based on Temporal Structure of Speech Sigrd&jro-
computing vol. 41, pp. 1-24, Oct. 2001.

L. Parra and C. Spence, “On-line convolutive sourceassgon of non-
stationary signals,J. of VLSI Signal Processingol. 26, no. 1-2, Aug.
2000.

L. Trainor, R. Sonnadara, K. Wiklund, J. Bondy, S. Guga Becker,
I.-C. Bruce, and S. Haykin, “Development of a flexible, retdi
hearing in noise test environment (R-HINT-E)3ignal Processing
vol. 84, no. 2, pp. 299-309, Feb. 2004. [Online].
http://trainorlab.mcmaster.ca/ahs/rhinte.htm

A. Westner and J. V. M. Bove, “Blind Separation of Real Wdo
Audio Signals Using Overdetermined Mixtures,”Bmoc. ICA’99, 1999.
[Online]. Available: http://sound.media.mit.edu/ica-bench/

J. Allen and D. Berkley, “Image method for efficientlyrailating small-
room acoustics,J. Acoust. Soc. Amvol. 65, no. 4, April 1979.

Available:



