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Abstract—In this paper, we examine how energy computation robust automatic speech recognition (ASR), many questions
and filterban_k design contribgte to_the overall front-end rObL.JSt- such as how the energy estimation process and the filterbank
ness, especially when the investigated features are appmli€o design affect ASR performance under noise, especiallydor v

noisy speech signals, in mismatched training-testing coiittbns. . " . . ;
In prior work [1], a novel feature set called ‘Teager Energy 1©YS levels of additive/convolutional noise and acoustaded

Cepstrum Coefficients’ (TECC) has been proposed, employing Mismatch, remain open. The effect of noise on the features
a dense, smooth filterbank and alternative energy computatin  employed in a speech recognition front-end is non-triviad a
schemes. TECCs were shown to be more robust to noise andcan greatly influence the overall system performance. I thi
exhibit improved performance compared to the widely-used ,ntaxt much work has been done minimizing this mismatch

MFCCs. In this work, we attempt to interpret these results usng o1 131 b ing t f fi fth isy feat t
a combined theoretical and experimental analysis framewdk. [2], [3] by using transformations of the noisy features to a

Specifically, we investigate in detail the connection betvem the ‘cleaner’ feature domain, and thus improving their invhiiigy
filterbank design, i.e., the filter shape and bandwidth, the rergy to certain noise types. Other related work includes speech
estimation scheme and the ASR performance under a variety of enhancement [4], normalization of the noisy featuressttedil
additive and/or convolutional noise conditions. For this urpose: properties [5]-[7] and dynamic feature combinations [8]. |

(i) the performance of filterbanks using triangular, Gabor and [9]-[11], the effect of environmental noise on the statati
Gammatone filters with various bandwidths and filter positions ' . . )

are examined under different noisy speech recognition task and SPeech models was investigated and two algorithms (CDCN
(i) the squared amplitude and Teager-Kaiser energy operairs and MFCDCN) were proposed for compensating it. However,
are compared as two alternative approaches of computing the the feature robustness problem remains unsolved in a dyobal
signal energy. Our end-goal is to understand how to select ¢h optimal way. Our goal, in this paper, is to analyze both
most efficient filterbank and energy computation scheme that . L T .

are maximally robust under both clean and noisy recording theoretically and experlmentally, how the filterbank desg-
conditions. Theoretical and experimental results show tha (i) rameters and energy computation scheme affect the rolssstne
the filter bandwidth is one of the most important factors affecting  of speech recognition systems in noisy recording condition
speech recognition performance in noise, while the shape of The use of filterbanks in ASR front-ends was motivated by
the filter is of secondary importance, and (ii) the Teager-K&er  tha human hearing process [12]-[14], where the energy acros
operator outperforms (on the average and for most noise typ® f . f1h di ¢ . ved b . it

the squared amplitude energy computation scheme for speech requenmeso € audio spec ru_m ISTeso ve. y using aydi
recognition in noisy conditions, especially, for large filer band- filters. Although the human hearing process is for the most pa
widths. Experimental results show that selecting the apprpriate  heavily researched, machines have been unable to match the
filterbank and energy computation scheme can lead to signifant  ropustness that human beings exhibit in speech recognition
error rate reduction over both MFCC and Perceptual Linear in noise [15]. Efforts to model the human audio processing

Predicion (PLP) features for a variety of speech recognitio tasks. - o
A relative error rate reduction of up to ~30% for MFCCs and to further improve the robustness of speech recognitiont{fro

~39% for PLPs is shown for the Aurora-3 Spanish Task. end have had limited success, e.g., perceptual linear gredi
L . tion features (PLP) [16], relative spectral transform fiees
Index Terms—Robustness, speech recognition, parameter esti- . .
mation, speech processing, spectral analysis, cepstrum agsis, (RASTA) [17], dynamic spectral subband centroids [18] or

error analysis, time-frequency analysis, bandpass filters the auditory-based features [19]. However, for the past two
decades, the Mel Frequency Cepstrum Coefficients (MFCC)
I. INTRODUCTION [20] have remained the most widely-used features for ASR

Robust feature extraction is a complex problem much stugPPlications mainly because they combine good discririnat
ied over the years. Despite recent progress in the domaincgPabilities with low computational complexity. Thesetteas
incorporate some aspects of the human hearing process, such
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instead of the square amplitude energy operator [21], atite underlying assumption is that the information-camyin

human hearing-inspired filterbanks, i.e., Gammatone diltesignalsa;(t), w;(t) are slow varying compared to the carrier

placed on the Equivalent Rectangular Bandwidth (ERB) curveequencies. Next, we summarize the main theoretical tesul

The ERB is a measure used in psychoacoustics, approximafiragm [21].

the bandwidths of the filters in human hearing by rectangular

banq-pa}ss fiI_ters. It was first introduced for speech prat@ss  Harmonic Noise Modeling

applications in [22] and [23]. L . .
The main goals of this paper are to: (i) adequately presei,nlAn approxm:_;ltlon of a bandpass noise sigmalt) was.

the TECC ‘family’ of features, i.e., the TECCs and other fron '_rSt prpposed in [26], [27] and use_d n [2;]' The noise

ends employing similar design parameters, (i) inveséiga ignal is modeled as a sum of stationary sinusaigs(t)

under what noise conditions this new family of features eutp k=1, K;), with fixed amplitudes;, phase offsets .

forms the MFCCs, (iii) provide theoretical and experimdentz!\hat are independent random variables uniformly distetut

results on the optimality of the energy computation schenfd®’ [-m, ] and frequencies;; placed equidistantly with

(squared amplitude vs. Teager-Kaiser energy operatod), aﬁpacingwR,

(iv) investigate the optimal design of the filterbank (numbe Kj Kj
of filters, filter bandwidth and shape) for noisy speech recog vi(t) = Y vk(t) =Y bjkcos(wik t+0)  (2)
nition tasks. Specifically, we compare thmean Teager-Kaiser k=1 k=1

(MTE) or mean square amplitude (MSEhergy schemes for

cepstrum-based feature extraction, when applied to speel‘:%s}/wR] where B; is the j*-filter passband. Thus, we

signals corrupted by additive and/or convolutional nofer- approximate noise with more componetits when the filter
ther, we analyze the performance of the energy computatiﬁgssband is broader

schemes as a function of the filterbank design parameters, €.

bandwidth in conjunction with the noise spectral charaster ] ] o

tics. Overall, different key parameters of the featureantion B- NOISy Teager-Kaiser Energy Estimation

process are investigated and ASR experiments are undertakef we apply theTeager-Kaiser energy (TEQ)perator [24]

to examine their impact on the corresponding recognitidn the bandpassed noisy signalt) = r;(t)+wv;(t), its long-

results. This work builds upon theoretical results in [21]. termmean Teager-Kaiser energ¥TE) [21] is a sum of two
The paper is organized in sections as follows: In Secti@m@mponents

Il, the clean speech and the harmonic noise models are

introduced. Herpein, the input signals are bandpass filtered < Wls;(1)] >~< aj(t)wj () > +Zb§kw5k ®)

and the respective filter bandwidths are examined, as well. k

A unified energy estimation scheme is presented, where jBere< - > denotes the time-averaging process.

Teager-Kaiser energy Operat((ﬂ'EO) and thesquare amp”- The normalized dEViationDT prOVideS a measure of the

tude energy operatofSEO) are only two cases of the generaﬂobustness of energy estimation in additive noise and iseefi

scheme, Section II-C. It is shown that the energy estimatié& the ratio of the difference between the mean noisy and clea

performance is much dependent on the filter bandwidth. TRBErgy estimates over the mean clean estimates,

proposed feature extraction process is presented in &ddtio ZKj b2, W2

In Section 1V, it is investigated how additive and convabual Drlsj,r;] =~ ’;Zl—{fﬂ“

noise types affect the proposed features. The performaince o < aj (t)“j (t) >

these features in speech processing applications is pegseén The normalized deviatioD is proportional to the squared

Section V; both energy estimation and speech recognitionpgfoduct of wjr with the amplitude coefficients;,, and

noise are investigated. Finally, the conclusions and dision inversely proportional to the mean instantaneous frequenc

The number of sinusoid componemts; is given by K; =

(4)

of future work are provided in Section VI. w?(t) weighted bya?(t). Therefore, theDs estimates de-
pend on therelative spectral energy distribution (within the
Il. BACKGROUND frequency band of interest) of the noise and speech sigasls,

In most speech processing applications, speech sigials detailed in [21].
are filtered by filterbanks yielding; (t) = g;(¢) * z(t), where
g;(t) is the impulse response of th&" analysis filter and+#’ C. Noisy Squared Amplitude Energy Estimation
stands for conyglunon. The AM-FM ;peec_h model suggestSthe mean s
the decomposition of the speech signal info(resonance
inspired) signals; (¢), whereJ the number of deployed filters

in the analysis filterbank [24], [25], 1
y ) [24], [25] < s3(t) >~ 3 << a?(t) > +Zb§k> (5)
- k

J t
z(t) ~ Z;Tj () =2 a;(t)cos (/0 wy(T)dT + 9j> @ Similarly, thenormalized deviatiorDs for the MSE case is
j:

j=1

quared amplitude enerdMSE) for s;(t) is
given by

. . K; b2»
wherea;(t), w;(t) are the instantaneous amplitude and fre- Dsls;, 1] ~ k=1 Y%k (6)

guency modulating signals arj is a phase offset. Herein, < a?(t) >



The Ds estimates are approximately equal to the inversad the normalized deviatioPr, (4), is given by

signal-to-noise ratio (SNR) values in the filter passband. b2
Henceforth, the signal arguments, i.e., the signals), r;(t), Dyls;,r;] = TR (8)
will be ignored in D7 and D for notational simplicity. <aj(t) >

The MTE normalized deviation (4) can be formulated as the Correspondingly, for the MSE case,
ratio of the2"?-order spectral centroid of the noise over the
clean signal [25], while, the MSE deviation (6) is the ratio 0 s7 = ~a(t) [1 + cos (2w;t + 26,)]
the 0*"-order spectral centroids [18]. We can express both of 2> 1
these deviations with a compact notation + §b2 [1 + cos (2wt + 26,)]

Zk b?wf
T, P X (@) P

+ ba;(t) [cos(6y — 0,) + cos(2weit + 0, + 6,)]
and, the MSE deviation, (6), is

Forp=0: D = Dg, whereas fop =2: D® = D. b2
Based on the equations above, the spectral energy distribu- Dslsj,rjl = TW ©)

tion (pt"-order spectral moments) within the frequency band . !

of interest determines the relative performance of the M&E aF"0mM (8) and (9), it is concluded that both long-tefm- and

MTE! estimates. In general, the MTE values present smalls &€ equal when narrow bandpass filters are used. Conse-

estimation errors (deviations) when compared to the mS/€ntly, no significant difference is expected when empigyi

ones when the high-energy noise components are concehtr&ifferent energy operators on narrowband signals (thisies t
over low frequencies (within the passband), and vice-veisa €8S€ of approximately monochromatic signals). Howevaer, th

due to the weighting term? that affects the overall spectraIMSE estimates include time-decaying transient phenomena,
energy distribution of the input signal [21]. The MTE andS ©PPosed to the MTE scheme where these phenomena are

MSE estimates are obviously related, due to this ferm not present (in the case of shorter averaging windows). In
general, the MTE estimates are expected to present smaller

deviations than the MSE ones, as outlined in Section 1I-D.

D. Medium and Short-Time Properties of Energy Operator . . . L .
) P _gy P Srhe experimental verification of this analysis is preserited
The analysis above assumes that the duration of the av€kction V.

aging window is long enough to ignore all transient terms.
However, the estimation errors of the MTE and MSE scheme§ G eneERALIZED CEPSTRUMCOEFFICIENT FRONT-ENDS

depend on the window length, as well. In the case WhenN _ . | f h d
medium- and short-time windows (less than 15 ms) are ext, we Investigate cepstral features that are compute

considered, transient terms contribute to the estimatioor e ysing different filterbanks and energy computation schemes

and should be taken into further account in the analysis. g th? mel Teager-energy cepstral coefficients and their
this context, the MTE deviation values are expected smal@gneralizations.

than those of the MSE ones. Finally, all the transient terms

are inversely proportional to the frequency content, diler A. ERB and Maximally Smooth Filterbanks

center frequencyw.. Therefore, these deviation terms are The Equivalent Rectangular BandwidttERB) has been
further emphasized for smaller frequency values. A moigtroduced to measure the bandwidth of asymmetrical IIR

D@ —

()

detailed description can be found in [21]. filters, such as the Gammatone filters. Given thgto.)| is the
maximum gain of a bandpass filter with frequency response
E. Narrowband Signal Analysis G(w), reached at frequeney,, then the filterERBIis defined
For narrowband signals the signaj(¢) is approximated 2S 2
. : ; . J1Gw)dw
by a two-cosine sum, i.e., the noise has a single frequency ERB = COE (20)
component |G we)

In other words, the ERB is the bandwidth of a rectangular
5j(t) = a; () cos (we;t + 0;) +bos (wejt + 6) shaped filter when its energy (the integral of its frequency
r;(t):Clean Signal v;(t):Noise Signal response magnitude squared) is normalized by the maximum
gain squared,G(w,)|?. By normalizing the filter ERBs, their
design parameters have to be modified accordingly.

wherew,; is the j*" filter center frequency. Then,

Uls;(t)] = wijas () + wlb® + 2bw?;a;(t) cos(f, — 6,) A Gabor filter impulse response is given by
Assuming thati; (t) ~ 0 andd;(t) ~ 0, the noisy signal MTE gGab(t) = et cos(wet) (11)

estimate (3) is given b
I (3)is giv 4 whereb is a parameter controlling the filter bandwidth and
<U[s;]>= wZ; (<ai(t)> +b%) is its center frequency. According to [28], the correspagdi
ERB value isBga, = b/v/27.

1The relative performance of MSE vs. MTE scheme doesn't solely depend Further. the impulse response of a Gammatone filter is given
on the signal-to-noise ratio in the frequency band. !

2Higher-order derivatives of the input signal correspondatger values of by 3 —9:1.10195¢
p, [21]. 9Gamm (t) = t°e” ™ cos(wet) (12)



where b is a bandwidth controlling parameter ang is its the proposed algorithm from the typical MFCC algorithm. The

center frequency. Its ERB value is given By;.mm = b [23].  following two steps, i.e., the cepstral coefficient estiomat
When the filters have equal bandwidth paramebers- and the truncation process, remain the same as in [20]. The

ASR results presented in [1] and in Section V below, show

Baan = 1/V27 - Bamm 0OF Bean = 04+ Baamm ~ (13) significant improvement, especially for recognition tasks

meaning that for the same design paramété&abor filters noise. The additional robustness to noise can be attributed

are narrower than the corresponding Gammatone ones. B9 the use of wider filters and the use of alternative energy

considering (13), the Gabor filter bandwidths shouldnioe- estimation schemes, i.e., the MTE scheme.

malizedby a factor of approximately (times) 2.5 to achieve

the same equivalent filtering passband as with the Gammatoye ERRORANALYSIS FOR CEPSTRUMFEATURES INNOISE

filter passbands. Henceforth, equal ERB values are assumegnt" now, the bandpass filters were considered ideal where

v(\;/hen compafrllng bASE results corresponding to Gabor alfﬁjeiramplitude response was rectangular with fixed anygditu
ammatone filterbanks. equal to unity. Herein, the aforementioned analysis is gene

alized for a wider ‘family’ of bandpass filters.
B. Generalized Cepstrum Coefficients Under the conditions detailed in [30], [31] for speech and
MFCCs are typically computed using a filterbankaf—25  [32] for image signals, a filtered bandpass AM-FM signt)
triangular filters with50% bandwidth overlaf the (log) mean can be approximated by
mel energy coefficients are estimated and then transformed t
to the Cepstrum domain via the Discrete Cosine Transform(t) ~ a;(t)|G; [wj(t)]|cos{/ w(r)dr + £Gjw;(t)] +6,}
(DCT). The feature sets analyzed in this paper, as proposed 0 (14)

in [1], employ smoother and broader filters. The use Q\f/hereGi[-] is the frequency response of thé" filter. The
such filters, i.e., Gammatone or Gabor filters, for eSti”@ﬁtirhpproximation is exact when;(t) is monochromatic, i.e.,
the cepstral coefficients, is supported by the broader filtgg(t) = constant. Further, in the case of real, symmetric
approach, as presented in [29]. In addition to that, differejjters, e.g., Gabor filters/G,[w;(t)] = 0 and the filtering
energy estimation schemes have been investigated, pngvidhrocess affects only the instantaneous amplitude sigftl

additional robustness to the proposed features (dependigg). sSimilarly to (14), the noise signal can be rewritten as
though, on the spectral fingerprint of the clean and noise

signals). 5
The feature extraction algorithm consists of the following v;(t) = ijk|Gi [wik]l cos{win t+ 01 + 2Gjlwinl}
steps, Fig. 1: k=0 (15)

1) Filter the speech signal using a mel-spaced filterbank. the case of filtering the speech signals, the instantaneou
The filterbank consists 025 — 100 smooth filters and amplitude signals are given by

uses Gabor, Gammatone or Gammachirp fitters
2) Estimate the MTE or MSE mel-energy coefficients of the a;(t)|Gjlw; ()] andbk|Gjlw;i]|

framed bandpassed signals. _ The phase offsets, i.e4G;[w;(t)] and ZG,[w;i], are aver-
3) Transform these energy coefficients into the Cepstrufeq o Only in the cases of short- and medium-term energy

domain. Only the first low-order cepstral coefficients argveraging, these phase offsets should be considered.
kept for recognition (the de facto standard is to keep the ’

first 13 coefficients, including CO). o )
4) Estimate their first and second order time derivatives afid Cepstral Coefficient Error Analysis

perform Cepstral Mean Subtraction (CMS) As shown above, the noisy speech energy coefficients,
(3), (5), are the sum of the speech and the noise energy
coefficients (given sufficient length for the averaging van,
Short-term i.e., Ps[j, m] = Pr[j, m] + Pv[j, m], Wherej = 1, ce ,J,
Miband Ly T s [ opeT  —  m=1,-- M, Jthe number of filters and/ the total num-

Eslimation cers.  ber of frames. For the case of MTE,[j, m] =< ¥ [r;(t)] >

and P,[j,m] =< W[v;(t)] >', for t € m'h-time frame.
Henceforth, to simplify the notation we shall drop the frame
indexm from all equations. Note that this analysis holds true
o . .. for each one of the frames.
In [14], [19], it is conjectured that the Gammatone filters With a unified notation for both energy schemes, similarly

equidistantly placed in the mel-frequency scale, resertitde - .
human ear. The first two of the steps substantially difféa¢at to (7). theCepstral Mel Energy Coefficientz], [26] are given

—_—

Speech

Fig. 1. Block Diagram of the TECC Feature Extraction Process

by
3The triangular filters present finite passband support therethe overlap Cgp) =W. log(ng)) (16)
is, usually, estimated over them.
4Herein, results only for the first two types of filters are negd. 6Assuming thato; (t) is smooth enough, thed G, [w;(t)] ~ constant.
5The experimental results using features without CMS ardainowever, "Herein, only the MTE case is presented. However, the sanatieqtholds

these results appear more noisy making conclusions leas cle true for the case of MSE, as well.



where ") = (1), ¢P2], ---, c[)T is the wherer;, v; andh; are the framedt(c m!" time frame)
vector of the estimated noisy cepstral coefficients witigten bandpassed clean speech, additive and convolutional noise
I, W is an I x J Discrete Cosine Transform matrix andsignals, respectively. Further,
ng) _ (Ps(p)[l], Ps(p)[Q], ,Ps(p)[J])T and ng) _ ,
PP, PP2), -, PP[J)T are the noisy and clean Mjlv,] :/ WP|Gj(W)N (w, m)[dw
speech mel-energy coefficient vectors estimated over.jthe Bi
filter passbands. Depending on the energy estimation schemg/; [r; = ;] = / WP |G (W)X (w, m) | H (w, m) > dw
the parametep = 0 or 2 (whenp = 0, we refer to the MSE Bj
values, and fop = 2 to the MTE coefficients). To further and,
simplify the notation, we shall, henceforth, drop the super ] — Pl 2
scriptp, as well. The analysis below holds true for eitpet 0 Mjlrs] /-w 16 (w) X (o, m)[deo
orp=2.

Eqg. (16) is rewritten element-wise, as

J

where G,(w) is the j'* filter frequency response anB;
its passband, whereaX (w, m), N(w, m) and H(w, m) are,

J respectively, the periodograms of the clean, additive and
Culi] = Wi log (Pu[4]) (17)  convolutional noise signal frames, apdiefined as above.
j=1 By substitution, we obtain
Where_l << andWij = \/_2/J - COS [WZ(] — 1/2)/J]. fB~ wp|Gj(w)N(w,m)|2dw
Inspired by the analysis in [10], [11], we introduce the pD; = =~ >

Cepstral Coefficient DeviatiolhC|[i] as the difference of the fBj wP|Gj(w) X (w, m)[?dw
noisy and the clean speech cepstral coefficients,G.g:] and fB‘ wP(|H(w,m)? = 1)|Gj(w) X (w, m)|?dw 1
Ceo[il, ’

s, PG (W)X (w, m) 2dw

J .
AC[i] = Cy[i] — C.Ji] = Z Wi log (PS [J.]) (18) The normalized deviatiosD; consist of two terms account-
j=1 Pr[j] ing for the two different noise types, i.e., the additive dhe

From the analysis in Section I, (18) leads to convolutional noise parts.

' 7 Pv ) D_j _ D;onv +D;‘dd (22)
ACi) = Z W;;log (1 + PTBD Where
o Sy, &P (H(w,m)? = )]G ()X (w0, m) P

where the quantityP,[j]/P,[j] is the normalized MTE or ~ psonv & 25 ’ ! . i
MSE mel energy deviatiorfg)), within the;j*" filter passband. fBj wP |G (w) X (w, m)[*dw
Therefore, , and . N .

- wP|Gj(w w, m)|“dw

ACli] =) Wilog (1+ D;) (19) Ddd & Jp, 1G5 ()N . m)

[, wP|G;(w) X (w,m)Pdw

J=1

where D; £ P,[4]/P,[j] is the estimated energy deviation Assuming that|H (w,m)| remains almost constant for a
for the 'jth filter index, assumingP,[j] # 0, Vj. The certain time frame and across all frequency bands, then
AC deviation values provide an indication of how noiséH(“vm)P—l ~ H; and

(of different spectral characteristics) corrupts the MTe&ad D; = H; + D?dd

MSE-based cepstral coefficients. These deviations coofsést o ) )
linear combination of the log energy deviations weighted dynally; after substituting the noise model, we obtain
Wij, across all filte_rs. Therefore, the energy deviation values D= H o Wb |Gy (wi) 2
corresponding to different frequency bins linearly affaitthe 7T T wp|G(w) X (w, m)[2dw
cepstral coefficients. Consequently, smaller energy esitm !

errors will yield smaller cepstral feature deviations frome 1h€ assumption of convolutional noise with constant spéctr
clean one% characteristics for each time frame, adds a constant dewviat

term H; to the total normalized deviation. This constant error
term can be easily removed via an energy normalization post-
. . . _processing scheme, e.g., mean value subtraction [6].

In the presence of both additive and convolutional noise the|, o general case of noisy signals contaminated by both

corrupted speech signal equals tilt) « h;(t) + v;(t). AS  aqditive and convolutional noise, the cepstral deviathfi]
defined in the previous sections, the normalized mel-ener@g) will, now, contain an additional term (22)

coefficient deviation is given by:

(23)

B. Convolutional Noise Analysis

J
M;[vg] + Mj[ry + hy] — M;lrj] (20) ACi] =Y Wilog (1 + D™ + DY) (24)

D; =
’ M;[r;] =1

8The energy-related errors can be attributed to both theatitin process ~ °We assume thab; is non-negative and in the rare occasions when it takes
and the existence of noise. negative values we suggest thresholding it.



Similar results are presented in [9], [10] for the case diz, is present in the high-noise scenario, and an additional
the MFCCs. In this context, it should be highlighted thepike-like noise component around 3 kHz, can be noted for the
importance of the weighting term? that emphasizes certainquiet and low-noise scenarios. The first highpass component
parts of the signal power spectrum (according to the valfiesaan be attributed to the wind noise from the open windows
p) and thus, can provide smaller cepstral coefficient demiati while driving in high speed and/or the car-radio playing rous
AC[i] when set accordingly. One of the paper contributiorend the second one to the engine noise. This analysis is
is based on the introduction of this weight?, to the feature especially relevant for interpreting the results of theese
extraction process. recognition task; as explained in Section Il, the spectiapge

of the noise determines the relative performance ofMd=-

V. ENERGY ESTIMATION AND SPEECHRECOGNITION vs. MSE-based cepstral features.
EXPERIMENTS

In this section, various parameters of the feature extacti Mean PSD for Auore3-Spansh Database and Noise Condiions
process are investigated experimentally in terms of nois — Quiet
cepstral coefficient deviations from the clean case and the
respective speech recognition performance. Specifictily,
following parameters are evaluated: (i) the filter shapabor
or Gammatondilterbanks, (ii) the number of filters: ranging  -sof
from 25 to 100 filter®, (iii) the filter bandwidth (while
keeping the number of filters fixed) and (iv) the energy _,
schemeMTE or MSE approaches. In all cases, the filters are_
equidistantly placed following the mel frequency scaleeTh §
bandwidth overlap is estimated by considering the filteRBE 3
values. The same design parameters are used for both Ga®
and Gammatone filterbanks, i.e., same number of filtersy filte
placing and normalized ERB bandwidths.
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-100
A. Experimental Setup

For the experimental part of this paper three speec Y
databases are used, i.e., the Aurora-3 (Spanish task)radro

and the TIMIT+Noise speech databases. The fundamental d -1 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000

ference between these databases is that the first database « Frequency in Hz
tains real-life data, while the second and third databaees ¢ | . _ _
tain data corrupted by artificially added noises. The Aw®raFig- 2. Mean Normalized PSD for the three different Auroraxgise

datab . ded inside th bi f . conditions: quiet, low, and high noise levels. The mean PS&i@saveraged
atabase IS recoraed Insiae the cabin of a moving car USifid, 5 noise frames of the same noise condition signals.

both a close-talking and a near-field microphone. Thus, the
data contain both convolutional and additive noise. Furthe

. ... The Aurora-4 database has been created to investigate LV-
the Aurora-4 task is a Large-Vocabulary Speech Recognltlg\%R tasks in the presence of noise. The database is based
task (LV-ASR), contrary to the rest of the tasks that have 06}1 the WSJ database and the 5k-words task for training and
limited vocabulary and use all-pair grammars.

In more detail, the Aurora-3 database contains recordihgstgsung’ respectively [33]. For training, the 16 kHz sardple

. . . : noisy set is used. It contains a variety of noises added to the
two different microphones and three noise levels with agyeraC ean speech and mixes data from several microohones. The
SNR levels at 12, 9 and 5 dB, respectively. Three differep{ P ' P '

training-testing scenarios are examined, i.e., the welletmed est set was created by adding seven different noise tyes, i

(WM), the medium-mismatch (MM) and the high-mismatcC|ean’ street traffic, train station, car, babble, restsuamd

(HM) conditions. In the WM scenario, all combinations of'rport’ to two-microphone recordings yielding 14 differe

microphones and SNR levels are included in both the traini gsting conditions [33]. The Language Model used is the

n ; X , .
and the testing sets. In the MM scenario, training and tg@s$sin b%;_ehn”e mﬂdelhprgv:jdedbby tr_:_eMEI:Ir'fll\lcpnﬁguratlon. db
performed using only the hands-free microphone recordings .. inaty, the .t rd atabaseT( 0|s§) Is created by

In the HM condition, the close-talking microphone recogtin rtificially add'”g different types of noise to_the TIMIT .
are used for training, while the hands-free recordings aeglu datazjbase.tF_or th|ts pl.tlrpqscel, th_e NO|SEIX'92 norllse_?ha:ift‘)o:se IS
for testing. Typically, car noise is assumed lowpass. Harey!S€0, containing ten typical noise samples, each wi

the analysis of the mean normalized power spectrum denss ctral characteristics [34]. These noise signals arendow

- - : led to 16 kHz and added to the speech sent&nftem
(PSD), shown in Fig. 2, does not fully support this assumlptloS mp i .
Specifically, a highpass noise component betwisgn — 2500 the TIMIT database, while keeping the global average SNR

10In this set of experiments the bandwidth overlap percentagfeveen 11The noise signals have a duration of approximately 235 s,mrtion of
adjacent filters remains fixed. Consequently, changing tiraber of filters the noise signal is randomly selected and added to eachtsgagwl. Their
also affects the filter bandwidth. sampling frequency is 19.98 kHz.



fixed at SNR = 5 dB'2. The training is performed on the In Fig. 3(a)-(c), the mean log RMS error is shown for a
clean TIMIT data while the test sets consist of the nois€&ammatone filterbank with 25 filters, while in Fig. 3(d)-(f)
corrupted versions of the original TIMIT test set. Furthbe the error is shown for 100 filters. Given that for both cases
clean speech signals are used as reference for comparingthieefilter overlap is fixed at 50%, the bandwidths in the first
normalized deviation and log distortion difference valwés case are four times larger than the later ones. As explained
the estimated features. in Section II-E, the differences between the MSE and MTE

The HMM-based HTK Tools platform is used for allestimates are expected to be more prominent for the filtérban
ASR experiments. The statistical model for the Aurora-& tasvith larger bandwidth filters. Indeed for narrow-band fiter
consists of 11 context-independent, left-right, word HMMas those employed in a 100-filter filterbank, the deviation
that are trained using the ETSI WIOO07 training scripts. Falifferences become non-trivial only for the first and lasw fe
the TIMIT+Noise tasks, the model consists of 46 phoneméker indices [see Fig. 3(d)-(f)]. For filters positioned liow
based, 3-state, left-right HMMs with 16 Gaussians per stafeequencies, the difference is due to transient phenonteta t
The grammar used for both cases is the all-pair, unweightae not fully averaged out. For wider filter passbands the
grammar. The MFCC, PLP, MSE- and MTE-based featudifferences between the MSE and MTE deviations become
vectors consist of 39 coefficients, i.e., 13 cepstral cdefiis significant, depending on the spectral shape of the sigrdhl an
(including CO) and their first and second time-derivatives. on the noise type.

The principal motivation behind including experiments on Overall, the MTE estimates are significantly more robust,
both real and artificial data is twofold: (i) using artificidéta i.e., yield smaller deviation values than the MSE ones, when
allows for the exact computation of the deviations (from thihe major spectral energy content of noise is concentrated i
clean ones) for the ASR features, and (ii) using real-lifeadalower frequencies compared to that of the speech signal, e.g
presents different unaccounted sources of noises thaadegr in the case of volvo noise [see Fig. 3(b)]. Mixed results are
the ASR performance, i.e., Aurora-3 data. On the contrakyptained for other noise types (babble and white noise) as
the underlying phenomena in TIMIT+Noise task are clearlyhown for the case of phoneme /aa/. In addition, transiest ph

presented and anticipated by the theoretical analysis. nomena play a key role, especially for the lower frequencies
(or smaller filter indices) [21]. The MTE estimation scheme
B. Speech Signal Energy Deviations outperforms the MSE one for smaller filter indices, due to

Typically, the estimation of the signal time-frequency ye these transient phenomgna. T_he differenc_e in_ performance i
distributions is the first step in the feature extractiongess. More pronounced for wider filters and fricative sounds. In
We compare the MTE and MSE computation schemes acrdd§ cases detailed above, the MTE-based estimated desatio
all filters in the presence of additive noise. The normaffrom the clean energy coefficients) are presented significa
ized MTE and MSE energy deviations defined in (4) angimaller than the respective MSE ones.

(6) are actually the inverse subband SNRs, where the mel-
energy coefficient deviation from the clean estimates is the Cepstral Coefficient Deviations

‘noise’ and the clean-case estimate is the ‘desired signal’

Consequenty, the SNR of the MSE scheme is defihes LU0y C8 SO o8 0o0 o b
A D e .
SNRs = —10log,(Ds), and similarly for the MTE case, as discussed in Section Ill. One possible way to explore

i.e., SNR- £ —10log,,(D7). Energy estimation results are , . . X
presented in terms ofmean SNR differencein dBs), or the features’ robustness is to estimate the normalized mean

SNRs — SNRy. The differences assume negative values on gﬁiﬁlﬁl.feature deviation from the clean case (in dBs) as

when the averaged MTE-based deviations are smaller than K(\?[z']

the corresponding MSE ones. In that sense, the TeagerKaise DevCli] £ 201logy, (A_> (25)
operator provides more robust energy estimates than those Crld]

based on MSE. —

1000 instances of the phonenfas/ and/sh/ are extracted where ACT], prpvided by (19), are the RMS o_lif_fer'ences
from the TIMIT+Noise database for each of thabble car between the noisy and the clean cepstral coefficiefts:

andwhite noise types. Two different mel-spaced Gammatorid- " ** > 1}, normalized by the RMS values, [i] of the clean
filterbanks, using 25 or 100 filters (with constaBt dB- ones. These deviations are indicative of how noise of differ

bandwidth overlap of50%) are used [1]. MTE and MSE spectral characteristics affects the cepstral coeffisi&imilar

coefficients are computed for each bandpassed signal us"ﬁﬁbor analysis iS_’ also, applied to th? MFCCs (“5"‘9 a Ay
an analysis window of 30 ms, updated every 10 ms. Tﬁlgerpank) and is used.as a basel_lne. The experlmgntal setup
log root-mean-square (RMS) differences between the trde dfMains the same as in the previous experiment, i.e., MSE-

estimated MTEs and MSEs are computed and averaged ofefl MTE-based cepstral coefficients are computed for 1000
all frames and 1000 phonemic instances. TIMIT instances of the phoneme /aa/ corrupted by additive

noise, when filtered by mel-spaced Gammatone filterbanks

12The SNR value is estimated as the mean ratio of the speechtiower
noise signal energies per frame. Then, the noise signalscaled so that  14The normalization scheme ensures that the coefficient ramnirange
the global mean SNR is 5 dB. Therefore, this value refers ¢éowifde-band cannot affect the overall experimental results (lack ogfilinagnitude nor-
speech signal and suggests that the SNR level is, on thegayesadB. malization can cause this mismatch across different fitiekb). Eq. 25 is
13The “~ stands for mean estimates averaged over 1000 phonemadasta inspired by [10], [11].
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Fig. 3. Multiband SNR energy estimation differences for M&tl MTE schemes averaged over 1000 instances for the phenémaé and /sh/, extracted

from the TIMIT database, corrupted by babble (a),(d), cau(éb and white (c),(f) noises &NR = 5 dB (on average). The filterbanks consist of (a)-(c) 25
and (d)-(f) 100 mel-spaced, Gammatone filters with fixed lapeof 50%. Positive values mean that the MSE scheme is mdmestdhan the MTE one.
Negative values indicate better performance of the MTE sehe

with either 25 or 100 filters and fixed bandwidth overlap afiBs) are presented as a function of the cepstral coefficient

50%.
| Mean Normalized Cepstral Deviations (in dBs) |
Cepstral Noise Types Num. of
Features|| Babble [ Car | White | Aver. Filts.
MFCC -0.01 1.16 4.42 1.86
MSE- -5.80 -1352 | -1.62 | -6.98 | 25 Filt.
MTE- -7.08 -28.62 | -2.58 | -12.76
Phone || MFCC 0.84 2.66 6.31 3.27
faa/ MSE- -2.47 -2.30 -0.38 | -1.72 | 100 Filt.
MTE- -4.74 -10.93 -2.28 -5.98
MFCC 9.01 7.56 4.72 7.10
MSE- 4.55 8.70 1.51 4.92 25 Filt.
MTE- 5.69 3.88 2.36 3.98
Phone || MFCC 8.01 6.76 3.61 6.13
/sh/ MSE- 3.11 9.01 -0.22 3.97 | 100 Filt.
MTE- 0.75 4.75 -2.71 0.93
TABLE |

MEAN NORMALIZED DEVIATIONS (IN DB) FOR3 FEATURE SETS: MFCC,

MTE- AND MSE-BASED CEPSTRALCOEFFICIENTS FOR3 NOISE

SCENARIOS: BABBLE, CAR AND WHITE NOISE. CEPSTRALDEVIATIONS

ARE ESTIMATED USING 25-AND 100-HLTER FILTERBANKS FOR1000
INSTANCES OF THEPHONEMES /aa/ AND /sh/. SMALLER VALUES
INDICATE ENHANCED ROBUSTNESS TONOISE.

index for babble [Fig. 4(a),(d)], car [Fig. 4(b),(e)], andhite
noises [Fig. 4(c),(f)]. The deviations of the MTE- and MSE-
based features are, on average, smaller, outperforming the
MFCC baseline. Further, MSE-based and MFCC features
present very similar performance for some of the noise types
The differences are more pronounced when wider filters are
employed (25-filters), as shown in Table I. As expected,
the MTE-based features present smaller deviations than the
MSE-based features for volvo noise, as shown in Fig. 4(e)
and, especially, in Fig. 4(b). For babble and white noise all
three front-ends perform similarly. This is consistenthatite
mel-energy coefficient deviations presented in the previou
section. Similar results are also reached in the case of the
MTE/MSE cepstral coefficient scheme for other phonemes.
Concluding, we observe that the MTE-based features out-
perform, on average, all other studied features, i.e., M&CC
and MSE-based cepstral coefficients, for most phonemes and
types of noise, see Table I. These differences are especiall
pronounced for lowpass noises, e.g., car (volvo) noisallyin

the proposed features present significantly smaller dewisit
w.r.t. the clean feature version, compared to the MFCC+base
deviation values, according to Table |, providing addiéibn

In Fig. 4, the normalized RMS cepstral deviations (in
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Fig. 4. Normalized RMS cepstral deviations (in dBs) comguteger 1000 instances of the phoneme /aa/ extracted fromIt¥€T Tdatabase. Results shown
as a function of coefficient index for babble (in (a),(d))r ¢a (b),(e)) and white (in (c),(f)) noise at an averag®R = 5 dB. The filterbank consists of
(a)-(c) 25 and (d)-(f) 100 mel-spaced, Gammatone filteré iked overlap of 50%. Smaller values indicate enhancedstoless in noise.

for the TIMIT+Noise database are shown in Fig. 6 for Gabor
and Gammatone filterbanks, and MSE/MTE estimation. Fi-
D. Speech Recognition Experiments nally, the PLP [16] and MFCC [20] features (extracted using

Next, speech recognition performance is evaluated whtre HTK platform [35]) provide the baseline performancd. Al
the following parameters vary: filter shape, energy schenfeatures are normalized after removing their long-ternstrap
number and bandwidth of the filters. Word and phone errgteans (CMS). Plots in Fig. 5 have different y-axis ranges to
rates are estimated for various types and levels of noisg, ifurther enhance their readability.

the Aurora-3 (Spanish Task), Aurora-4, and the TIMIT+Noise according to the experimental results, moderate filter band
databases, respectively. The results are presented astafun widths, i.e., the middle-part of the graphs in Fig. 5 and the
of the first filter ERB value and the total number of filtersniqdie column in Fig. 6 seem to be more robust to different
(th(_e filter bandwidth overlap percent is a dependent pa“ﬂmeﬁaining/testing mismatches and yield the higher recogmit
taking values betweeﬁ?t%.— 85%). For example, for the rates across all noise scenarios. For the case of low and
leftmost Fig. 6(a), thel*" filter ERB takes values betweenmediym mismatch between training and testing conditions,
22 — 44 Hz that correspond to ERB overlap (with the adjaceqt the WM and MM scenarios, the MTE- and MSE-based
fiters) percent of30% — 85%. The ERB overlap percent iSfeatyres appear to always outperform the baseline MFCC
fixed across all filters of the filterbank. In the case of thf’eatures, providing enhanced immunity to noise. Both fiestu
100-filter filterbanks in Figs. 5, 6(c), the filter ERB valuegs a perform similarly for reasonable values of the filter band-
set proporthn_al to those. of the 25- and 50-filter filterbankgiqths. However, for the high mismatch task (HM), the perfor
(when examining theit** filters and the ERB overlap percentnance of the MSE and MTE front-ends diverge significantly,
ranges iB0 —85%). Results (word accuracy) for the Aurora-3gpecially when wider filters are employed (the right-mast p
database are shown in Fig. 5 for Gammatone filterbanks agdthe plots or when 25-filter filterbanks are employed, Table
for MSE/MTE estimatiof®. Further, results (phone accuracy)j). The MSE-based features present an additiaaéd relative
improvement (for moderate filter bandwidths) compared & th
MTE-based features angD% improvement when compared

robustness to the feature extraction process.

15The results for the word-level LV-ASR task (Aurora-4) appéa be
similar to those of the Aurora-3 task and are omitted due ¢& taf space.
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Spanish Task, WM Scen. with 100 Filters and Var. Filter Overlap to the presence of the high-frequency noise componentaein th

low SNR conditions, as shown in Fig. 2. On the other hand,
ASR performance for both features (MTE- and MSE-based
features) is similar, on average, for the case of narrowdilte
(the case of 100-filter filterbanks, Table II).
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Word Accuracy (%) of Aurora-3, Spanish Task |

Correct Word Accuracies (%)

891 7 Scenario| WM MM HM Aver. Rel.
88l 4 Features Impr.
87~ - -MTE E Aurora Frontend (WI007)] 92.94 | 80.31 | 51.55| 74.93 [ -37.75
asll Thes i MFCCY 93.68 | 89.46 | 62.50 | 81.80 -
gpl—eee PLP} 9497 | 89.10 | 53.68 | 79.25 | -14.01
16 27 38 49 60 71 82 93 104 115 126 137 148 159 170 181 192 MSE-Based (25 Fllt) 9420 8952 7805 8726 3000
(a) MSE-Based (100 Filt) | 94.65 | 90.95 | 70.29 | 85.30 | 19.23
Spanish Task, MM Scen. with 100 Filters and Var. Filter Overlap MTE-Based (25 Filt.) 9422 8021 | 71.94 | 85.12 | 18.24
T T T T T T T T T T MTE-Based (100 Filt) | 94.75 | 90.80 | 71.76 | 85.80 | 20.33
%r b 1 Features are Normalized using Cepstral Mean SubtractidfiS|C
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TABLE I
WORD ACCURACY (%) ON THE AURORA-3 (SPANISH TASK) DATABASE
USINGHTK. THE FILTERBANKS CONSIST OF25-0OR 100-HLTER
GAMMATONE FILTERS. RESULTS FORFOUR FEATURE SETS ARE
PRESENTED MFCC (BASELINE), PLP, MTE-AND MSE-BASED
CEPSTRALCOEFS IMPROVEMENTRELATIVE TO MFCC (WITH CMS)
BASELINE.
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Correct Word Accuracies (%)

6 27 3‘8 49 60 71 82 93 104 115 126 137 148 159 170 181 192 NeXt’ In Flg _6' the performance Of MSE/MTE IS |nVeSt|'
() gated as a function of both the number of employed filters and
Spanish Task, HM Scen. with 100 Filters and Var. Filter Overlap their Shapes in the TIMIT+Noise task. The filter Shape does
S L S N R L not significantly affect the ASR performance, provided that
the corresponding ERB bandwidths are normalized, comgarin
the plots in Figs. 6(a)-(b). It, also, appears that the numbe
of filters employed is not an important factor, as well; sanil
results are obtained for different filterbanks employing12®
filters, when the corresponding filter bandwidths are equal-
ized"’, Fig. 6(b)-(c). Examining the relative performance of the
MSE- and MTE-based features, the MTE clearly outperforms

o
=]
T
I

Correct Word Accuracies (%)
&
L

Ss’fgégc 1 the other features for the case of volvo (car) noise, eslhecia

ol | when filters present large ERB bandwidths. For other noise

T e eRB by types, the MSE- and MTE-based features display similar
© performance, Table Ill. The differences in performance are

) _more pronounced in the case of wide filters, e.g., when using
Fig. 5. Word accuracy for the cepstral MTE and MSE-basedifeat(using

CMS) for 100 Gammatone filters, in the Aurora-3 Spanish detab The a 25-filter filterbank.
horizontal axis displays thERB Valuesof the 15¢ filter. These values are  Overall, if we fix the energy estimation scheme, the pa-

equalized (sequentially) to thest filter ERB values of the 25- and 50-filter ; ; :
filterbanks (when the filter overlap percent rangesin— 85%). Results for rameter that mamly affects ASR performance is the filter

three training/testing mismatched scenarios are showWnHigh Mismatch Pandwidth, rather than the bandwidth overlap perceritagre
(HM), (b) Medium Mismatch (MM), (c) Well Matched (WM). The baline the shape of the filters (as long as their ERBs are normalized)

MFCC and PLP results are shown as dashed lines. There is also a relatively wide range of filter ERBs (from
approx. 50 Hz to 120 Hz) where good ASR performance is

achieved. Thus, the word error rates seem to mostly depend
to the baseline results (obtained by the ETSI WIO07 fron(tj— y ¢ep

) .on the ERB values, exhibiting a stable performance for a
end) Table Il. These improvements are reached when the f'l\tiﬁﬁe range of ERB values. Similar results were obtained

bandwidths assume reasonable values, i.e., the band‘"‘ﬁ(]ltr\'/vﬂen additive noise was added to the noise-corrupted TIMIT

the first filter is less than 130 Hz. As detailed above, inmdasdatabase
filter bandwidths lead to differences between the two energy '
_estimati_on schemes. In the case where the filter bandwidths ( 17pp,¢ overlap percentage has been altered accordingly toreewsider
in the right-most part of the plots) take very large val3ges fiters in the case of the 100-filter filterbank. The® filter ERB values are

the MSE-based features Outperform the MTE-based ones Gg@ahzed (sequentially) to thest filter ERB values of the 25- and 50-filter
filterbanks (when the filter overlap percent range8in- 85%), and the rest
of the ERB values are increased proportionally.
16The 1st filter bandwidth in the filterbank takes values gretitan 140 18Note that the range of overlap remains the same for the 25, @Dfilter
Hz. experiments, ranging frord5 — 85%, Fig. 6.



| Phone Accuracy (%) of TIMIT+Noise Task |

11

tion (PEQ). This is particularly important in building rotu
ASR systems.

In future work, we plan to extend our work to the design
of filterbanks that optimize ASR performance under adverse

Scenario | Babble | White Car Aver. Rel.
Features Impr.
MFCC 36.14 | 24.48 | 54.73 | 38.45 -
PLP 38.36 | 30.23 | 49.39 | 39.33 | 2.29
MSE-Based (25 Filt.) 39.95 | 33.22 | 46.86 | 40.01 | 4.06
MSE-Based (100 Filt.)] 42.53 | 33.69 | 55.88 | 44.03 | 14.51
MTE-Based (25 Filt.) 40.83 | 33.52 | 51.84 | 42.06 | 9.38
MTE-Based (100 Filt.)| 42.33 | 32.57 | 56.76 | 43.89 | 14.15

All Features are Normalized using Cepstral Mean Subtradi@VS) |

TABLE IlI
PHONE ACCURACIES(%) ON THE TIMIT+N OISE(ADDITIVE BABBLE,
WHITE OR CAR NOISES) DATABASE. THE FILTERBANKS CONSIST OF25-
OR 100-HLTER GAMMATONE FILTERS. IMPROVEMENT ISSHOWN
RELATIVE TO THE MFCC (WITH CMS) BASELINE.

(1]

VI. CONCLUSIONS- DISCUSSION 2

We have investigated four key parameters in the featur[g]
extraction process, namely: filter bandwidth, filter bardtvi
overlap, number of filters and the energy computation scheme
We have also examined their impact on ASR performaan]
for three different recognition experiments. The presgnte
results are supported by a theoretical analysis of the i@&@pst
coefficients estimation error in noise. Overall, the eqieina
rectangular filter bandwidths and the energy estimatioeseh
appear to be two of the most significant parameters determiffl
ing ASR performance. According to the presented findings,
ASR performance can be predicted for a particular choice gf)
filter bandwidth range and energy estimation scheme when
the relative spectral energy distributions of signal anéseo (8]
are considered.

In more detail, the performance of the averaged energy
estimation scheme is mainly a function of the relative séct [9]
energy content of the noise vs. the speech input signal, when
examined within the filter passbands. The proposed genéf
alized cepstral features are directly related to theseggner
distributions. Therefore, it is of great importance to eBsu(i1]
a robust and efficient energy computation process. Energy
estimation errors propagate to the cepstral coefficientaedl. [12]
The proposed noisy cepstral coefficient deviations (denat
from the clean case) are, on average (RMS values), smaller
than those of the MFCCs. This is due to the energy sc:her[l%3
and the wider filters employed.

In this context, it is shown that features using filters df4l
different spectral shape present similar performance when
their effective filter bandwidths are kept equal, regarslles
of their design parameters, for low and medium mismatd!
training/testing scenarios. For high mismatch, the energy
computation scheme is usually the most important factor
affecting performance; the signal vs. noise spectral eunte!?]
should be first analyzed, selecting the most appropriat@gne[lg]
computation scheme.

Finally, similar trends and conclusions can be drawn wh?{\g
advanced signal denoising and feature equalization tqabsi ]
are applied in combination with the feature extraction sthe
as shown in [36]. There, the performance improvements app&al
to be additive on top of the signal and feature enhancement
techniques, such as Wiener filtering and Parameter Equaliza

recording conditions and under time-varying noise.
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Fig. 6. Phone accuracy for cepstral features based on MTE/stBemes tested on the TIMIT+Noise database (with CMS)ed kifferent scenarios are

investigated: (a) Gabor Mel-Filterbank and (b) Gammatore-Miterbank (for both cases the number of filters is 10006@5 for each of the three columns,
respectively). The horizontal axis displays tB&B Valueof the 15 filter, for ERB overlap ranging ir80 — 85%. (c) Mel-spaced, 100-Filter Gammatone
Filterbank and ERB values proportional to those of the 28 B@filter filterbanks (when the ERB percent range8(n- 85%). Results are shown for three
noise types: babble, white and volvo (car).



