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Abstract—We present an affective text analysis model that can
directly estimate and combine affective ratings of multi-word
terms, with application to the problem of sentence polarity/se-
mantic orientation detection. Starting from a hierarchical
compositional method for generating sentence ratings, we ex-
pand the model by adding multi-word terms that can capture
non-compositional semantics. The method operates similarly to
a bigram language model, using bigram terms or backing off
to unigrams based on a (degree of) compositionality criterion.
The affective ratings for -gram terms of different orders are
estimated via a corpus-based method using distributional se-
mantic similarity metrics between unseen words and a set of
seed words. -gram ratings are then combined into sentence
ratings via simple algebraic formulas. The proposed framework
produces state-of-the-art results for word-level tasks in English
and German and the sentence-level news headlines classification
SemEval’07-Task14 task. The inclusion of bigram terms to the
model provides significant performance improvement, even if no
term selection is applied.

Index Terms—Affect, affective lexicon, distributional semantic
models, emotion, lexical semantics, natural language under-
standing, opinion mining, polarity detection, sentiment analysis,
valence.

I. INTRODUCTION

A FFECTIVE text analysis, the analysis of the emotional
content of text, is an open research problem, relevant for

numerous natural language processing (NLP), web and multi-
modal dialogue applications. One popular application is senti-
ment analysis/opinion mining, that aims to identify the emotion
expressed in news stories [1], blogs and public forums [2] or
product reviews [3], [4]. Generally opinion mining is restricted
to separating positive from negative views (polarity detection),
or positive, negative and neutral views. Opinion mining is fo-
cused on the emotion expressed by the writer (writer-perspec-
tive), rather than the emotion experienced by the reader. Emo-
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tion recognition from multimedia streams (audio, video, text)
and emotion recognition of users of interactive applications (i.e.,
spoken language transcripts) is another task where the affective
analysis of text plays an important, yet still limited role [5]–[7].
Other applications may focus on the reader/media consumer
perspective, such as multimedia content analysis through subti-
tles [8] or news headlines analysis [9]. The requirements of dif-
ferent applications lead to the definition of different sub-tasks,
such as emotional category labeling (assigning text a label, such
as “sad”), polarity recognition (classifying into positive or neg-
ative) and subjectivity identification (separating subjective from
objective statements). The affective task is further defined by the
emotional representation used (e.g., basic emotions or valence)
and the scope of analysis (word, sentence, document analysis).
Given the wide range of applications, affective text analysis

has been a popular topic of research in the NLP and Semantic
Web communities in recent years. The bulk of the research has
focused on hierarchical lexical models, starting from words
and working their way up to sentences or documents. Hier-
archical lexical models require affective lexica that provide
affective ratings for each word/term in the evaluation corpus.
Manually annotated lexica, like the General Inquirer [10] and
Affective norms for English Words (ANEW) [11] are too small
for most applications, containing only 3600 and 1034 words,
respectively. Computational methods are necessary to create
or expand an already existing lexicon, creating much larger
resources like SentiWordNet [12] and WORDNET AFFECT
[13]. However, there are still limitations, e.g., WordNet-based
efforts can not produce ratings for words not included in
WordNet, including multi-word terms and proper nouns; the
latter being particularly important when creating ratings for
news’ headlines.
Given an affective lexicon of sufficient coverage, sen-

tence-level affective ratings are created by combining
word-level ratings. Often, when lexica with continuous
affective ratings are available, sentence-level ratings are es-
timated as simple numerical combinations of word ratings
(typically the arithmetic mean). There have been attempts of
using syntactic rules with encouraging results, e.g., [14], though
such approaches are, so far, limited to using binary or tertiary
word affective ratings. There has been very little research on
modeling directly the affective content of multi-word terms
[15], especially compounds with non-compositional semantic
context, i.e., multi-word terms where their meaning cannot be
expressed as a combination of the meaning of their constituent
words.
We propose a method for affective lexicon expansion that

can create ratings for both single and multi-word terms. By ex-
plicitly modeling the affective content of multi-word terms one
can implicitly model the non-compositional semantics of mod-
ifiers and compounds (despite the lack of syntactic rules in the
model). For instance, the proposed model generates a rating for
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“not good” despite the lack of any explicit handling of nega-
tions. Given these fine-grained/pseudo-continuous valence rat-
ings for all words and multi-word expressions contained in each
sentence, we then use fusion algorithms to combine them into
sentence ratings. The main contributions of this work are sum-
marized below:
• We generalize the affective lexicon expansion method pro-
posed in [16] to handle multi-word terms. The lexicon ex-
pansionmethod is language-agnostic, scalable and requires
no resources other than a small affective lexicon to boot-
strap the process. We also shed some light on the criteria
for selecting good candidates (seed words) for the boot-
strap lexicon.

• We show that context based semantic similarity estimated
on a corpus of web snippets (with good coverage for all
words in a language) significantly and consistently outper-
forms co-occurrence based metrics for affective modeling
tasks. Also a detailed evaluation of co-occurrence, context
and proximity as features for semantic similarity estima-
tion for affective modeling applications is reported.

• Motivated by the language modeling literature, we pro-
pose a framework for combining -gram ratings of varying
order and utilizing multi-word term detection methods, to
estimate sentence-level affective ratings. We use a struc-
ture similar to an -gram language model with back-off
and propose multi-word term selection criteria (for acti-
vating the back-off strategy).

The structure of this paper is as follows: Section II offers a
brief review of prior research. Section III details our framework
of word, -gram and sentence rating creation. Section IV ex-
plains our experimental/validation procedure. Section V con-
tains our experimental results and Section VI concludes the
paper and proposes future research directions.

II. PRIOR WORK

The task of assigning affective ratings, such as binary “pos-
itive – negative” labels, also known as semantic orientation
[17] is an active research area. The underlying assumption for
most semantic orientation algorithms is that semantic similarity
can be translated to affective similarity. Therefore, given some
metric of similarity between two words one may derive the
similarity between their affective ratings. In [18], a set of
words with known affective ratings together with the semantic
similarities between these words and an unseen word are used
to estimate affective ratings for the new word. The reference
words that are used to bootstrap the affective model are usually
referred to as seed words. The nature of the seed words can
vary; they may be the lexical labels of affective categories (e.g.,
“anger,” “happiness”), small sets of words with unambiguous
meaning or even all words in a large lexicon. Having a set of
seed words and an appropriate similarity measure, the next
step is devising a method of combining these to create the final
rating. In most cases the desired rating is some form of binary
label like “fear” – “not fear,” in which case a classification
scheme, like nearest neighbor may be used to provide the final
result. Alternatively, continuous/pseudo-continuous ratings
may be estimated via algebraic combination of similarities and
ratings of seed words [19].
In [18], [20], hit counts from conjunctive “NEAR” web

queries are used to measure co-occurrence of words in web
documents; semantic similarity is estimated for hits via
point-wise mutual information. The estimated valence

TABLE I
THE 14 SEEDS USED IN THE EXPERIMENTS BY TURNEY AND LITTMAN.

of each new word is expressed as a linear combination of
the valence ratings of the seeds and the semantic
similarities between the new word and each seed as;

(1)

The seeds used are adjectives (7 pairs of antonyms)
shown in Table I and their ratings are assumed to be binary (
or 1)1.
WordNet-based methods [22], [23], [13], [24] start with a

small set of annotated words, usually with binary ratings. These
sets are then expanded by exploiting synonymy, hypernymy and
hyponymy relations (traversal of the WordNet network) along
with simple rules. Various approaches are then used to calcu-
late the similarity between unseen words and the seed words,
including using contextual similarity between glosses [22] and
synset distance metrics [24]. The main benefit of resource-based
methods is the ability to create ratings per sense of each word,
however ratings can only be produced for words in WordNet.
Most of the aforementioned work utilizes the notion of

semantic similarity between words or terms in order to infer
affective ratings. Semantic similarity metrics can be roughly
categorized into: i) ontology-based similarity measures, e.g.,
[25], where similarity features are extracted from ontologies
(usually WordNet), ii) context-based similarity measures
[26], where similarity of context is used to estimate semantic
similarity between words or terms, iii) co-occurrence based
similarity metrics where the frequency of co-occurrence of
terms in (web) documents is the main feature used for esti-
mating semantic similarity [18], [21], and iv) combinations
of the aforementioned methods [27]. Context-based methods
form the basis of distributional semantic models (DSM),
distinguished into unstructured and structured types [28]. Un-
structured approaches do not consider the linguistic structure
of context: a window is centered on the target word and the sur-
rounding contextual features within the window are extracted
[29], [30]. For structured approaches the extracted contextual
features correspond to syntactic relationships, which are typi-
cally extracted by dependency parsing and represented as word
tuples [31], [28]. Recently corpus-based methods (especially
context-based metrics) where shown to perform at par with
ontology-based metrics [30], especially when using semantic
networks as generalizations of distributional semantic models
[32].
Having created an affective lexicon, the next step is the com-

bination of these word ratings to create ratings for larger lexical
units, phrases or sentences. Initially the affect-bearing words
need to be selected, depending on their part-of-speech tags [33],
affective rating and/or the sentence structure [34]. Then their
individual ratings are combined, typically in a simple fashion,
such as a numeric average. More complex approaches involve

1Themethod is shown to work very well in terms of binary (positive/negative)
classification, achieving an 82.8% accuracy on the General Inquirer dataset.
This method depends on the, now defunct, Altavista NEAR queries. As shown
in [20], [21] the method performs much worse when using conjunctive AND
queries instead.
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taking into account sentence structure, word/phrase level inter-
actions such as valence shifters [35] and large sets of manu-
ally created rules [33], [34]. In [14] a supervised method is used
to train the parameters of multiple hand-selected rules of com-
position. However these complex methods have shown little
improvement over simpler distributional approaches. Further-
more, the application of syntactic rules becomes prohibitively
complex when using continuous word/sentence ratings: even
the simplest of rules would require multiple parameters/cases.

III. AFFECTIVE MODEL

As in [18], we start from an existing, manually annotated lex-
icon. A subset of words is automatically selected from the lex-
icon to serve as seed words for the affectivemodel. The affective
rating for a new word/term is estimated as a linear combination
of the products between semantic similarities and affective rat-
ings of the seed words.Wemodify the method in [18] by adding:
i) weights to the equation, one per seed word, so as to adjust each
seed word’s contribution to the final output, and ii) a function
(kernel) that modifies the semantic similarity score contribution
to the model. The weights are selected so as to minimize the
mean square training error.
The trainable weights are meant to capture the relevance of

each seed word in the affective model. For instance, a seed word
with high affective (or semantic) variance might be a less robust
predictor of the affective scores of unseen words. Words with
high affective variance typically have multiple part-of-speech
tags and word senses, or their valence rating is highly con-
text-dependent. In addition, a set of seed words might not pro-
vide a detailed and representative description of the affective/se-
mantic space, e.g., selecting only words with positive valence
scores significantly hurts performance of the model2. Rather
than attempting to estimate the individual contribution of each
parameter to the relevance of seed words in our model, we use
machine learning to automatically estimate linear weights for
each seed word. The weights are estimated in order to minimize
estimation error on the bootstrap affective lexicon using the
Least Squares Estimation (LSE) algorithm, as detailed below.
A simplified version of the affective model was first proposed
in [16].

A. Word Level Tagging

We want to characterize the affective content of words in
a continuous valence range of (from very negative to
very positive), from the reader (i.e., perceiver) perspective. We
model the valence of each word as a linear combination of its
semantic similarities to a set of seed words and the valence rat-
ings of these words:

(2)

where is the word we aim to characterize, are
the seed words, is the valence rating for seed word ,
is the weight corresponding to word (that is estimated as de-
scribed next), is a measure of semantic similarity be-
tween words and (see Section III-A) and is a simple
function from Table II. The function serves to non-linearly
rescale the similarity metric and will be henceforth
referred to as the kernel of the affective model.

2For more details on the effect of these factors on seed selection, see Sec-
tion V-C.

TABLE II
THE FUNCTIONS OF SIMILARITY USED.

...
...

. . .
...

...
...

(3)

Assuming we have a training corpus of words with known
ratings (the manually annotated affective lexicon we start from)
and a set of seed words (a subset of the lexicon) for
which we need to estimate weights , we can use (2) to create
a system of linear equations with unknown variables as
shown in (3); the weights and the extra weight
which is the shift (bias). The optimal values of these variables
can be estimated using LSE. Once the weights of the seed words
are estimated the valence of an unseenword can be computed
using (2). Note that no additional training corpus or data are
required here, the weights are estimated on the affective lexicon
used to bootstrap the model.
The valence estimator defined in (2) uses a metric

of the semantic similarity between words and . In this
work, we use both co-occurrence based and context-based sim-
ilarity metrics.
1) Co-Occurrence Based Similarity Metrics: estimate the

similarity between two words/terms using the frequency of
co-existence within larger lexical units (sentences, documents).
The underlying assumption is that terms that co-exist often
are likely to be related semantically. One popular method to
estimate co-occurrence is to pose conjunctive queries to a web
search engine; the number of returned hits is an estimate of the
frequency of co-occurrence [30]. Co-occurrence based metrics
do not depend on annotated language resources like ontologies
nor require downloading documents or snippets, as is the case
for context-based semantic similarities.
In the equations that follow, are the query

words, is the set of results returned for
these query words. The number of documents in each result set
is noted as . We investigate the performance
of four different co-occurrence based metrics, defined next.

Jaccard Coefficient: computes similarity as:

(4)

Dice Coefficient: is a variation of the Jaccard coefficient,
defined as:

(5)

Mutual Information: [27] is an info-theoretic measure that
derives the similarity between and via the dependence
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between their number of occurrences. Point-wise Mutual Infor-
mation (PMI) is defined as:

(6)

Mutual information is unbounded and can take any value in
. Positive values translate into similarity, negative

values into dissimilarity (presence of one word tends to exclude
the other) and zero into independence, lack of relation.

Google-Based Semantic Relatedness : Normalized Google
Distance is proposed in [36], [37] and defined as:

(7)

where . This metric is un-
bounded, taking values in . In [38], a bounded (in )
similarity metric is proposed based on Normalized Google Dis-
tance called Google-based Semantic Relatedness, defined as:

(8)

2) Context-Based Similarity Metrics: compute similarity be-
tween feature vectors extracted from term context, i.e., using a
“bag-of-words” context model, using a metric like cosine sim-
ilarity or Kullback-Leibler divergence. The basic assumption
behind these metrics is that similarity of context implies sim-
ilarity of meaning, i.e., terms that appear in similar lexical envi-
ronment (left and right contexts) have a close semantic relation
[39], [26]. “Bag-of-words” [40] models assume that the feature
vector consists of words or terms that occur in text indepen-
dently of each other. The context-based metrics presented here
employ a context window of fixed size ( words) for feature
extraction. Specifically, the right and left contexts of length
are considered for each occurrence of a word or term of interest
in the corpus, i.e.,

where and represent the th word to the left and to
the right of , respectively. The feature vector for word or term
is defined as where is a

non-negative integer and is the context window size. Note
that the length of the feature vector is equal to the vocabulary
size , i.e., all words in the vocabulary are features. The th
feature value reflects the (frequency of) occurrence of vo-
cabulary word within the left or right context window of (all
occurrences of) the term . The value of may be defined
as a (normalized or unnormalized) function of the frequency of
occurrence of feature in the context of . Once the feature
weighting scheme is selected, the “bag-of-words”-based metric

computes the similarity between two words or terms,
and , as the cosine similarity of their corresponding feature
vectors, and as follows, [40]:

(9)

where is the context window length and is the vocabu-
lary size. The cosine similarity metric assigns 0 similarity score
when , have no common context (completely dissimilar
words), and 1 for identical words. Various feature weighting
schemes can be used to compute the value of . The binary

weighting metric used in this work assigns weight
when the th word in the vocabulary exists at the left or right
context of at least one instance of the word , and 0 otherwise.
Alternative weighting schemes such as tf-idf are more popular,
but we opt for binary weights that perform best in semantic sim-
ilarity tasks [30], [41] and are computationally simpler.

B. Multi-Word Term Tagging

So far we have used the terms “word” and “term” in-
terchangeably when referring to the targets of the method
described in Section III-A. The method has no requirement that
would limit us to estimating word ratings or even limit us to the
English language: it can work for any term of any length and for
any language as long as we have a starting affective lexicon and
an appropriately large text corpus. When applying to bigrams,
only the semantic similarity metric has to be extended to handle
both unigrams and bigrams. In principle, the co-occurrence and
context-based metrics used for unigrams can be also used
to estimate the semantic similarity between -grams3.

C. Sentence Level Tagging

We assume that the affect rating of sentence
can be estimated via the composition [42] of

the affective scores of its constituent words . The simplest
fusion model (and also by far the most popular) is a simple
linear combination of the partial ratings:

(10)

where and are trainable weights corresponding to an offset
and unigrams respectively. Linear fusion assumes that words
should be weighted equally independently of their strong or
weak affective content. As a result, a sentence containing only a
few strongly polarized terms might end up having low absolute
valence (due to averaging). Next, we propose a weighted av-
erage scheme, where terms with higher absolute valence values
are weighted more:

(11)

where is the signum function. One could also generalize
to higher powers or to other non-linear scaling functions. Next,
we consider non-linear min-max fusion, where the term with
the highest absolute valence value dominates the meaning of
the sentence:

(12)

where is the argument of the maximum. One could also
consider combinations of linear and non-linear fusion methods,
as well as, syntactic- and pragmatic-dependent fusion rules.
The use of the simple fusion schemes proposed above with

only the words of each sentence, carries the implicit assump-
tion of a compositional model of semantics and affect. Specifi-
cally, estimating the affective score of a sentence is assumed to

3The generalization is straightforward for context-based metrics and indeed
such metrics have been successfully used to estimate the semantic similarity
between multi-word terms [30]. However, for co-occurrence based metrics that
use word counts, the mean and dynamic range of similarity scores is very dif-
ferent between unigrams and bigrams, making their fusion a challenge (see also
Section III-D). No bigram seed words are necessary to bootstrap the model.
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be simply a problem of appropriately scaling the contribution of
each word’s affective score to estimate a sentence level score.
Although the compositionality assumption might be reasonable
in many cases (and as we shall see in Section V produces good
results), there are many cases of compound expressions where
their semantic and affective content cannot be accurately esti-
mated as a (weighted) sum of its words. Such examples include:
1) modifiers such as negation that can alter the meaning and (re-
verse) affective scores, and 2) idiomatic multi-word expressions
that cannot be semantically parsed word-for-word4. To address
these concerns, we extend the above models to using terms (of
length ) instead of just words: a model using -grams instead
of unigrams (words) will attempt to combine the partial ratings
of all overlapping -grams within a sentence.

D. Fusion of -Gram Models

In this section, we attempt to improve on the performance of
unigram- and bigram-only affective models by utilizing them
as building blocks to create models that employ unigrams and
bigrams. The proposed fusion algorithms are motivated by lan-
guage modeling. Here, instead of -gram probabilities (for lan-
guage models), we are combining affective scores. The main
fusion strategies, however, are similar: 1) interpolation of the
valence scores of the unigrams and bigrams (or higher-order),
and 2) back-off from bigrams to the unigrams when a certain
criterion is satisfied. Much like language modeling the back-off
criterion should be related to -gram counts. For affect, addi-
tional criteria may be devised that are related with the “degree
of compositionality” (semantic or affective) of each -gram. For
bigrams that appear rarely in our corpus it may be advantageous
to back-off to a unigram where adequate statistics to accurately
estimate affective scores exist.
1) Interpolation: For sentence that consists of the word

sequence we create a unigram and bigram
affective model, respectively, that estimate the sentence level
affective score as follows5:

(13)

where the valence of word and the valence
of bigram are both estimated using (2). We combine the
scores of the unigram and bigram models as follows:

(14)

(15)

where are linear weights that can be estimated via machine
learning on held-out data and the term

4Note that deviation from the expected meaning and affective content
of a multi-word expression may also occur due to contextual or pragmatic
constraints, e.g., “wicked” can have high positive valence in certain contexts.
However, such semantic/affective variability can occur both for words and
multi-word expressions and are not treated directly here.
5For simplicity, we only present the equations for the simple linear model. It

is straightforward to generalize to non-linear fusion schemes.

serves the need to use each unigram in the sentence an equal
amount of times (by adding the ratings of the first and last un-
igram). It is straightforward to extend the proposed method to
higher order -gram models.
2) Back-Off: Here instead of interpolating the affective

scores of different -gram models, we propose a criterion
for alternating between the unigram and bigram model [43].
Specifically we define the selection criterion for bigram

; we utilize bigram if is larger than some
threshold or revert to the unigrams and otherwise, i.e.,

(16)

where and are the trainable weights of the unigram and
bigram models respectively. After performing term selection,
we combine the scores:

(17)
The criterion for selecting the appropriate -gram

model utilizes both the frequency of occurrence of the -gram
in our corpus and the degree of compositionality of the -gram.
Specifically, the following criteria are proposed:
1) The probability of occurrence of the bigram :

(18)

2) A mutual information-like criterion that measures the
probability of co-occurrence of words and (a simple
measure of compositionality):

(19)

3) The absolute difference between the valence scores esti-
mated via the bigram and unigram models (a measure of
affective compositionality):

(20)

Note that the -gram frequency-based criterion can be
combined with the degree of compositionality criteria
and/or producing the following criteria:

(21)

The thresholds are estimated for each criterion
on held-out data.
3) Weighted Interpolation: Weighted interpolation extends

the interpolation and back-off models. Similarly to the back-off
model we use a compositionality criterion for bigram

, however in weighted interpolation bigram and corre-
sponding unigram ratings are interpolated when is over
a threshold :

(22)

where and . The final
collection of terms will include all unigrams in the sentence and
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some bigrams (appropriately weighted). As before, we combine
the selected terms to produce the final sentence rating:

(23)

IV. EXPERIMENTAL PROCEDURE

Next we present the corpora used for training and evaluation
of the proposed algorithms. In addition, the experimental proce-
dure for semantic similarity computation, affective lexicon cre-
ation and sentence-level affective score computation is outlined.

A. Corpora

The main corpus used for creating the affective lexicon is the
Affective Norms for English Words (ANEW) dataset. ANEW
consists of 1034 words, rated in 3 continuous dimensions of
arousal, valence and dominance. In this work, we only use
the valence ratings provided in ANEW6. Looking at quantized
values, the dataset contains 586 positive and 448 negative
words.
The second corpus used for evaluation of the affective lexicon

creation algorithm is the General Inquirer (GINQ) corpus that
contains 2005 negative and 1636 positive words. The General
Inquirer corpus was created by merging words with multiple
entries in the original lists of 2293 negative and 1914 positive
words. It is comparable to the dataset used in [18], [20]. After
removing the words that overlap with ANEW, we are left with
1443 positive and 1754 negative words.
To evaluate the lexicon creation method on a non-English

dictionary, we used the Berlin Affective Word List Reloaded
(BAWL-R) dataset. BAWL-R contains 2902 German words an-
notated in continuous scales (we use only valence). In quantized
form, the set contains 1636 positive and 1266 negative words.
For the sentence level tagging task the SemEval 2007: Task

14 corpus is used [9]. This SemEval corpus contains news head-
lines, 250 in the development set which are used for training
and 1000 in the testing set which are used for evaluation. The
headlines are manually rated in a fine-grained valence scale of

, which is rescaled to for our experiments. In
quantized form the set contains 474 positive and 526 negative
samples.

B. Corpus Creation and Semantic Similarity

In our experiments we utilized four different similarity met-
rics based on web co-occurrence, mentioned in Section III-A,
namely, Dice coefficient, Jaccard coefficient, point-wise mutual
information (PMI) and Google-based Semantic Relatedness as
well as a single contextual similarity metric, cosine similarity
with binary weights.
All similarity metrics employed require a corpus in order to

calculate frequency statistics or collect context. In this work we
use three corpora derived from the web and created by submit-
ting queries to the Yahoo! search engine and collecting the re-
sponse.
The first corpus is the web, which is only used to compute

co-occurrence based similarities. Co-occurrence based simi-

6The method is applicable to arousal and dominance, however for the pur-
poses of this work we focus on the more popular dimension of valence. Valence
was selected over arousal and dominance due to its greater applicability and
larger volume of prior work enabling comparisons.

larity metrics require the individual (IND) words’ number of
occurrences as well as the number of times that the two words
co-exist within a set distance. Usually this distance is unlimited
(anywhere within a document); this method is used by the AND
operator of web search engines. However it is possible to limit
that distance, e.g., the Altavista NEAR operator used to obtain
co-occurrence in [20] limited co-occurrence to a distance of
10 words. The alternative we used was the Yahoo! NEAR
operator, which was an undocumented feature of the Yahoo!
engine. This corpus will be henceforth referred as “web.”
Using the web directly poses practical challenges. The vast

number of queries required can have a significant cost (in terms
of both time andmonetary cost).More importantly, the desirable
distance-limited joint queries are not supported by most search
engines: we obtained enough data for our experiments from the
Yahoo! engine, however as of this writing the Yahoo! engine
no longer supports the NEAR operator. To alleviate these prob-
lems we created two more corpora by posing IND queries to the
Yahoo! search engine and collected the top (if available)
snippets (the short excerpts (page samples) shown under each
result, typically one or two sentences automatically selected by
the search engine) for each word. Each snippet contains at least
two sentences from the result: the title and a preview of the con-
tent. The second and third corpora were built using this process.
The second corpus is task dependent: we created a vocab-

ulary that contained all words in (all) our evaluation corpora,
posed a single IND query for each of them to Yahoo! and col-
lected 1000 snippets (where available) from each query. The
corpus contains 14 million sentences and was indexed using
the Lucene indexing engine [44], effectively creating a local
search engine. This 14 m corpus was used to compute both
co-occurrence based and context-based similarities. Using the
14 m snippet corpus one can emulate hit counts obtained by
NEAR queries (on the “web” corpus), e.g., by estimating co-oc-
currence counts within the same sentence. To compute con-
text-based similarities, the left and right contexts of all occur-
rences of and are examined and the corresponding feature
vectors are constructed. The parameters of context based met-
rics are the number of web documents used and the size
of the context window. In all experiments presented in this work

, whereas the values used for are 1, 2, 5 and 10.
This corpus will be noted henceforth as 14 m.
The third corpus is created similarly to the second one, by col-

lecting snippets, however it is task-independent: to create it we
used a vocabulary of the English language, specifically the one
that comes with the Aspell spellchecker [45] containing 135,433
words. For each of them we posed an IND query and collected
up to 500 snippets. The final corpus contains 116 million sen-
tences and will be noted henceforth as 116 m. As with 14 m, the
downloaded text was indexed with Lucene and used to compute
both co-occurrence based and context-based similarities. This
corpus was created7 as part of the EU-IST PORTDIAL project
http://www.portdial.eu/.

C. Affective Lexicon and Word Affective Ratings

The following tasks and associated experimental setup have
been used for model training and performance evaluation in this
work:

7The main motivation behind creating this large task independent corpus is
that the performance of semantic similarity metrics has been shown to improve
due to better coverage of rare word senses of common words and more uniform
word occurrence probabilities. For more details see [32].
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TABLE III
TRAINING SAMPLE USING 10 SEED WORDS.

• ANEW-CV: 10-fold cross-validation on the ANEW
dataset, i.e., model training and evaluation on the ANEW
dataset.

• GINQ-PD: model training on the ANEW dataset, evalua-
tion on GINQ dataset.

• BALWR-CV: 10-fold cross-validation on the BAWL-R
dataset.

In all cases the seed words were selected from the training
set (training fold in the case of cross-validation), therefore on
cross-validation experiments the seeds are different for each
fold. Given a set of candidate seeds (in most cases the entire
training set), we applied a simple method to select the desired
seeds. It seems, looking at Turney and Littman’s method [18],
but also confirmed by our experiments, that good seeds need to
have a high absolute valence rating. It also proved beneficial to
ensure that the seed set is as close to balanced (sum of seed va-
lence is zero) as possible. Therefore our selectionmethod started
by sorting the positive and negative seeds separately by their va-
lence rating. Then positive and negative seeds were added to the
seed set iteratively so as to minimize the absolute value of the
sum of their valence ratings, yet maximize their absolute va-
lence ratings (or frequencies), until the required number was
reached. More on seed selection is given in Section V-C.
The semantic similarity between each of the seed words

and each of the words in the test set (“unseen” words) was com-
puted, as discussed in the previous section. Next for each value
of , the optimal weights of the linear equation system matrix
in (3) were estimated using LSE. Finally, for each word in the
test set the valence ratings were computed using (2) and evalu-
ated against the ground truth.
A toy training example using features and theGoogle

semantic relatedness co-occurrence based metric is shown in
Table III. The second column shows the manually anno-
tated valence of word , while the third column shows the
corresponding linear weight computed by the LSE algorithm.
Their product (final column) is a measure of the
affective “shift” of the valence of each word per “unit of simi-
larity” to that seed word (see also (2)). The last row in the table
corresponds to the bias term in (2) that takes a small positive
value. Note that the coefficients take positive values and are
not bounded in , although similarity metrics are bounded
at and target valence values are also bounded in .
There is no obvious intuition behind the scores, e.g., it is not
clear why “suicide” should receive much higher weighting than
“funeral.” The weights might be related to the semantic and af-
fective variance of the seed words.
The following objective evaluationmetrics were used to mea-

sure the performance of the affective lexicon expansion algo-
rithm: (i) Pearson correlation between the manually labeled and

Fig. 1. Example of word rating fusion, showing the per-word ratings and the
phrase ratings produced by the three unigram fusion schemes.

automatically computed valence ratings and (ii) binary classi-
fication accuracy of positive vs. negative relations, i.e., contin-
uous ratings are produced, converted to binary decisions and
compared to the ground truth. Statistical significance testing
was conducted using the paired sample -test (right-sided) for
the cross-validation experiments and McNemar’s test for non
cross-validation. Unless mentioned otherwise, we set the statis-
tical significance threshold at .

D. Sentence Affective Ratings

The SemEval’07-Task 14 corpus was used to evaluate the var-
ious -gram fusion methods. All unseen words/terms in the sen-
tence corpus were added to the lexicon using the affective lex-
icon expansion algorithm outlined above (3983 unigrams and
6630 bigrams overall). The model used to create the required
ratings was trained using all of the words in the ANEW corpus
as training samples and of them as seed words. Then the rat-
ings of each term in the sentence were combined to create the
sentence rating.We employed content word selection when con-
sidering unigram terms: unigrams that were not nouns, verbs,
adjectives or adverbs were ignored. To identify content words
part-of-speech tagging was performed using TreeTagger [46]. A
toy example can be seen in Fig. 1.
In order to evaluate the performance of the sentence level af-

fective scores we used the classification accuracy for the 2-class
(positive, negative) problem. Statistical significance testing was
conducted using McNemar’s test.

V. RESULTS

In this section, we evaluate the proposed algorithms on a va-
riety of word- and sentence-level affective tasks. The following
issues are investigated: i) the relative performance of the co-oc-
currence and context-based semantic similarity metrics for es-
timating continuous valence ratings of words, ii) the effect of
corpus size and type on performance, iii) how to select seed
words for the affective model and iv) the performance of var-
ious unigram- and bigram-level fusion strategies (interpolation,
back-off, weighted interpolation) for obtaining sentence-level
affective ratings.

A. Baseline Performance

The baseline performance for word-level affective tasks is
that of the method proposed in [18], [20]. The 14 words shown
in Table I were used as seeds, as well as, co-occurrence sim-
ilarities (mutual information metric ) estimated via NEAR8
web queries. In [20], the binary classification accuracy for
the GINQ dataset was reported at 82.8%; our implementation
yielded somewhat higher performance at 84%. In addition, the
same setup was run for the ANEW task achieving 0.66 corre-
lation and 82% binary accuracy performance. We do not report
baseline performance for the BAWL-R experiment (since no
seed words were proposed for German in [20]).

8Note that using NEAR conjuctive queries was essential to achieving good
performance using this method.
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Fig. 2. Performance of the affective lexicon creation algorithm using similarities based on co-occurrence counts from the 116 m corpus. Correlation for the
ANEW-CV experiment using: (a) a linear kernel and (b) a square root kernel.

B. Similarity Metric Selection

The first and arguably most important parameter of the affec-
tive model detailed in Section III-A is the semantic similarity
metric used. The related method in [20] uses the mutual infor-
mation similarity metric estimated via NEAR web queries.
In our initial experiments, we have observed significant perfor-
mance differences between various co-occurrence based met-
rics, e.g., see [16]. In addition to the type of similarity metric
used, the similarity estimation method also significantly affects
performance; most importantly the size and type of corpus used
to calculate statistics and term proximity. All experiments re-
ported in this section are for the ANEW-CV task using correla-
tion with human judgments as the performance metric.
The co-occurrence based similarity metrics used in this work

are the same as those used in [16], however, the method for esti-
mating co-occurrence counts has been updated. Specifically, we
can estimate co-occurrence counts either using web hits (web)
or on a corpus of snippets created via web queries over vocab-
ulary lists of various sizes (14 m, 116 m). Performance of the
Dice , Jaccard , mutual information and Google co-oc-
currence metrics, when calculated over the 116 m corpus9, was
evaluated on ANEW-CV, using a linear model kernel, is shown
in Fig. 2(a) as a function of the number of seed words10. The rel-
ative performance of the similarity metrics are similar to those
reported in [16], with and performing significantly better
( ) than and . All metrics perform better than the
baseline (see Section V-A) provided that a few hundred seeds
are used to bootstrap the model. Note however, that metrics
and are more robust to seed selection process, performance
is flat over a wide range of number of seeds. This can be recti-
fied by using the model kernels defined in Table II. Performance
using a square root kernel is shown in Fig. 2(b). The non-linear
rescaling has a significant effect ( ) on performance
when using the and similarity metrics: when using a loga-
rithmic or square root kernel they can reach or, in some cases,
overtake and , though overall and still prove to be better
choices. Kernels can also improve performance of the best per-
forming similarity metrics, however the differences are smaller

9Given that the corpus is composed of independent sentences, instead of full
documents, the co-occurrence statistics are very similar to the result of a NEAR
query (since we will only get a hit if the two terms co-occur within the same
sentence).
10Seed selection is performed here using the heuristic of maximum absolute

valence score and zero mean valence over all seed words, as detailed in Sec-
tion IV-C.

and less consistent. and perform very similarly in most
cases, with a slight edge to .
From previous work, e.g., [21], [16], it is clear that word prox-

imity is an important feature when estimating semantic similar-
ities for the affective model. Restricting the search engine so
that it registers co-occurrence when and occur within a
small distance (NEAR queries), rather than when they co-occur
within a document at any distance (AND queries) provides a
noticeable performance boost. Next we investigate the optimal
co-occurrence distance. For this experiment we estimated sim-
ilarities using the (best-performing) similarity metric on the
116 m corpus. Results are reported on the ANEW-CV task for
various distance requirements: accepting co-occurrence if the
term distance is up to or alternatively if the term distance is
exactly . The results are shown in Fig. 3(a) as a function of
the number of seeds. As expected close proximity is an impor-
tant feature, with best performance of the “equal to” experiment
achieved for distance 2, while for the “up to” experiment there
is virtually no performance gain at distances over 5. There is
no performance drop when moving to larger distances, however
this is an artifact of the snippet corpus11.
Corpus size and type also significantly affect similarity esti-

mation and model performance. In Fig. 3(b), we report the cor-
relation performance on the ANEW-CV task using the metric
estimated on each of the three available corpora (web, 14 m and
116 m). NEAR queries are used to obtain the co-occurrence sta-
tistics for the web corpus, while co-occurrence at the snippet
level is computed for the 14 m and 116 m corpora. Performance
for similarities estimated on the large corpus (116 m) are sig-
nificantly better ( over 300 seeds) than for the small
corpus (14 m). The 116 m and web corpora have similar per-
formance for a few hundred seeds (around 300 seeds), yet the
116 m corpus achieves better performance for fewer seeds and
higher top performance. These results further validate the use of
a corpus as a substitute for the elusive12 web NEAR queries.
Next we investigate the performance of context based sim-

ilarity metrics as a function13 of context window length

11Moving beyond sentence boundaries, e.g., defining co-occurrence at the
document level, significantly reduces the performance of semantic similarity
based affective models, as shown in [21], [16].
12As discussed in Section IV-B the Yahoo! NEAR querying functionality was

an undocumented feature of the engine, that has been recently removed.
13Different lexical weighting schemes for context vectors have been also in-

vestigated (not reported here). As expected, the binary weighting scheme per-
formed best for affect classification, as was the case also for semantic similarity
estimation tasks in [30], [32].
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Fig. 3. Performance of the affective lexicon creation algorithm using co-occurrence based similarities. Correlation for the ANEW-CV experiment using: (a) the
116 m corpus and different window sizes at 150 seeds and (b) corpora of different sizes.

Fig. 4. Performance of the affective lexicon creation algorithm using context-based similarities. Correlation for the ANEW-CV experiment using: (a) the 116 m
corpus and different window sizes and (b) a window size of 1 and corpora of different sizes.

and corpus size (14 m, 116 m). Correlation performance on
the ANEW-CV task is shown in Fig. 4(a) for context based
metrics with window lengths of . The best
performance is consistently obtained for small window sizes
of , 2. This is consistent with the results in [30], [32],
where provided the best performance for a word-level
semantic similarity task. Correlation performance when context
based similarities are evaluated on the 14 m or 116 m corpus
is shown in Fig. 4(b) as a function of number of seed words.
Estimating context vectors on the larger corpus significantly
( over 100 seeds) outperforms the smaller corpus.
For a more detailed analysis on why a large task-independent
corpus is expected to provide better performance for semantic
similarity estimation tasks see [32].
Based on the results reported in this section, henceforth we

focus our attention on the Google co-occurrence based semantic
similarity metric and the binary weighted context based se-
mantic similarity metric with context window . Next,
results are reported in terms of correlation and binary classifi-
cation accuracy for , for a variety of word-level and sen-
tence-level affective tasks.

C. Seed Word Selection

Seed words act as points of reference in affective space,
relative to which all other words are rated. As such, their selec-
tion from a set of candidates is an important step of the rating
creation process. Next we try to answer the question of what

are the qualitative features of a “good” seed word or good set
of seed words. For this purpose, we used a supervised feature
selection method in the form of a wrapper and evaluated the
automatically selected seed word sets against a range of po-
tentially relevant factors: (i) number of possible part-of-speech
tags, (ii) number of possible senses, (iii) seed word frequency
of occurrence, (iv) mean and standard deviation of the semantic
similarities, (v) standard deviation of valence, (vi) absolute
value of valence and, (vii) the valence rating of the seed word.
The number of part-of-speech tags and word senses was es-
timated from WordNet. The mean and standard deviation of
semantic similarity scores were estimated between each seed
word and all words in the ANEW dataset using the or
semantic similarity metric. The valence, absolute valence and
standard deviation (where standard deviation was computed
over all human annotations of each word) of valence were
taken from the ANEW dataset.
The experiment was conducted as a modification on the

ANEW-CV experiment. For each of the 10 folds, we per-
formed an internal 10-fold cross-validation experiment (split-
ting the train set only into 10-folds, an approach referred to
as double-loop cross-validation) and used the performance
of different seed sets in the internal loop to select a seed set
for that fold of the external loop. The seed set search strategy
was forward, best-first: starting from an empty set we gen-
erated bigger sets by adding one feature at a time (the one
that improves previous performance most) and there were no
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Fig. 5. Performance of the affective lexicon creation algorithm using different seed selection algorithms and analysis of the wrapper selected seeds for the
ANEW-CV experiment using: (a) the similarity metric, (b) the similarity metric. The corresponding rank distributions of the top 50 seeds per fold selected
by a wrapper when using: (c) the similarity metric, (d) the similarity metric.

substitutions or deletions. The criterion of seed selection was
the mean square error in the internal experiment. We ran the
process up to seeds, creating 10 ordered seed sets of
length 150, one for each fold of the external loop and evaluated
the final performance on the external loop experiment.
Correlation performance on the ANEW dataset is shown in

Fig. 5(a) and (b) when using the and similarity metrics,
respectively, over the 116 m corpus. As a comparison, we
provide the performance attained when using our unsuper-
vised selection method based on absolute valence and seed set
balance, as detailed in Section IV-C. There is a clear benefit
to using a wrapper: performance is significantly (
under 50 seeds) better when using a small number of seed
words and the model reaches optimal performance requiring
fewer seed words. However, the performance benefit dissipates
fast (at 150–200 seed words) and, while a wrapper will reach
optimal performance faster, that optimal performance is not
significantly higher than that achieved by a model using our
unsupervised selection method, especially for the metric.
To identify features that make a good seed, we looked at the

rank distributions of the selected seed words across the various
factors, shown in Fig. 5(c) and (d) when using the and sim-
ilarity metrics, respectively. To make the results clearer we used
only the top 50 seeds selected for each fold, for a total of 500
samples. Box plots range from the 25% to the 75% percentile of
each distribution, while the dot in the box indicates the distribu-
tion median. In both cases, valence is the most relevant factor
that defines a good set of seed words: the selected seed words
have very high absolute valence ratings, a very narrow range of
possible affective interpretations (low standard deviation of va-
lence). Also the seed sets are close to balanced (high absolute
valence and high set valence variance).
For all the experiments that follow we use the unsupervised

seed selection method, since: i) the absolute valence heuristic is

validated by the results in Fig. 5(c), (d), and ii) the performance
gap between the unsupervised selection method and the double
loop cross-validation method is small when over 100 seeds are
used. However, note that if using a very small set of seed words
is a priority a supervised seed selection algorithm can achieve
good performance with a very small number of 20–40 seeds.
Note also that correlation performance of the supervised seed
selection algorithm is significantly ( ) higher than the
baseline method of [20] (solid blue line in Fig. 5(a),(b)) for the
same number of (14) seeds.

D. Word Affective Ratings

In this section, we report results using an unsupervised seed
selection method, the 116 m corpus and the best performing
similarity metrics , with a linear kernel to evaluate the
overall performance of the method on a variety of word level
affective tasks. In Fig. 6, 2-class classification accuracy is
shown for the binary word polarity detection ANEW-CV (a)
and GINQ-PD (b) tasks. In Fig. 7, correlation performance is
shown for the continuous polarity rating estimation ANEW-CV
(a) and BAWLR-CV (b) tasks. Results are shown for the
similarity metrics (estimated on web and 116 m corpus)
and (estimated on the 14 m and 116 m corpus), as well
as the baseline performance of the method described in [20].
For the German task (BAWLR-CV), results for , metrics
estimated on the 170 m corpus are reported. For the ANEW-CV
experiment, correlation with ground truth up to 0.87 and binary
classification accuracy up to 91% is achieved using the context
based similarity estimated on the large 116 K corpus. For
the GINQ-PD experiment, the best performance achieved is
classification accuracy of 87.3% for the metric estimated
on the 116 K corpus. Comparable results for this experiment
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Fig. 6. Accuracy of the affective lexicon creation algorithm: (a) ANEW-CV experiment, (b) GINQ-PD experiment.

Fig. 7. Correlation of the affective lexicon creation algorithm: (a) ANEW-CV experiment, (b) BAWLR-CV experiment.

found in literature, include: 82.8% [20], 81.9% [47] and 82.1%
[24]). In the BAWLR-CV experiment the model reaches 0.82
correlation with the ground truth.
Of note is the good performance and robustness of context-

basedmetrics across all experiments; they perform clearly better
and provide a model that is stable to the seed selection process.
In fact, the model continues to improve (in performance) even
when adding sub-optimal seeds, not exhibiting the large per-
formance drop of co-occurrence based metric models for large
number of seeds. Also important is the ability of the method to
perform well when applied to a different language (German) for
the BAWLR-CV experiment. Though in absolute terms perfor-
mance in BALWR-CV is lower than the comparable English ex-
periment of ANEW-CV, performance is still good, particularly
considering that the proposed model and similarity estimation
process is language-agnostic14.

E. Sentence Affective Ratings

For the sentence level affective rating task, we started from (a
subset of) the seed words of the ANEW dataset and performed

14Although, we have not yet performed a detailed evaluation of semantic sim-
ilarity metrics for the German language, preliminary experiments indicate that
context based semantic similarity metrics perform worse for morphologically
rich languages probably due to the larger number of word forms in these lan-
guages.

lexicon expansion for all unigrams and bigrams in our sentence
corpus. Specifically, and semantic similarities were esti-
mated between all unigrams and bigrams in the sentence corpus,
and the ANEW seed words. Similarity metrics were estimated
on the 116m corpus. The affectivemodel was then used to create
ratings for all unigram and bigrams in the sentence corpus. The
affective ratings were then combined using one of the (linear,
weighted, max) fusion methods described in Section III-C. Un-
igram and bigram affective ratings were fused using one of the
methods defined in Section III-D, i.e., interpolation, back-off,
weighted interpolation. The Least Squares Estimation (LSE) al-
gorithm was used to estimate the unigram and bigram weights15
on held-out data (SemEval development set). The various sen-
tence level affective models were then evaluated on the sentence
corpus (SemEval test set).
1) Baseline Performance: In order to establish a baseline, we

used the fusion schemes defined in Section III-C, using only un-
igram terms. Sentence level classification accuracy as a function
of the number of seeds is shown in Fig. 8 for the and met-
rics estimated on the 116 m corpus. Performance peaks at about
72% for the metric and 72.5% for the metric, an improve-
ment over previous results reported in [16]. The improvement of
the word rating algorithm and the addition of supervised training
to the sentence model provide a fairly minimal improvement
in performance. The simple numeric average performs better
throughout our experiments and benefits, particularly in terms

15Note that only the -gram fusion weights were estimated on the sentence
development dataset. The affective model seed weights were estimated on the
ANEW dataset.



2390 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 11, NOVEMBER 2013

Fig. 8. Binary classification accuracy of the sentence rating algorithm as a function of the number of seed words, when using only unigram terms and: (a) the
similarity metric, (b) the similarity metric.

Fig. 9. Binary classification accuracy of the sentence rating algorithm as a function of the bigram selection threshold (backoff rate) for the SemEval’07-Task14
dataset: (a) the similarity metric and 300 seeds, (b) the similarity metric and 600 seeds.

of stability, from the supervised training. Sentence ratings ex-
hibit very similar performance dynamics to word-level ratings,
e.g., optimal performance occurs for a similar number of seed
words.
2) Fusion of -Gram Models: Creating sentence ratings

using the higher order models described in Section III-D poses
a specific challenge: we need to select which terms to use,
from a pool of unigrams and bigrams. To do so, we used the
criteria described in Section III-D, i.e., interpolation, back-off
and weighted interpolation. To investigate the performance for
various combinations of unigrams and bigrams, we selected
two specific word models (using the similarity metric and
300 seeds, and using the similarity metric and 600 seeds)
and used different term selection criteria during the sentence
rating creation process. Sentence level classification accuracy
as a function of bigram rejection rate (back-off rate) is shown in
Fig. 9 for the (a) and (b) metrics. The figures can be read
as follows: we start at the bottom left, with the models using
only bigram terms. Then we move to the right, by replacing
bigrams with unigrams (back-off) according to the selection
criterion, until we reach the right edge, where the models are
using only unigram terms (baseline). From that point we move
back towards the upper-left corner, by keeping all unigram
terms and adding increasingly more bigrams (weighted in-
terpolation), again based on the selection criterion, until we
reach the left edge, where the model is using all unigrams and
bigrams (interpolation).

Performance when using only bigrams (dotted cyan line) is
noticeably lower than when using only unigrams (dotted purple
line), probably due to the lack of bigram seeds to bootstrap the
affective model. Despite this shortcoming, combining bigram
with unigrams significantly ( at 80% bigram rejection
in both cases) improves the performance of the affective model
over the unigram baseline. The performance gain is noticeably
higher when using the context16 based semantic similarity ,
as shown in Fig. 9(b).
In Fig. 9, classification accuracy is shown only for the two

best term selection criteria: and (to improve readability).
The two criteria detect terms in very different ways, is
often used for term-extraction or compound detection (i.e.,
non-compositional semantic constructs), while estimates
the degree of affective non-compositionality. The semantic
criterion provides the absolute best performance when using
a back-off model, while there is no clear winner when using
the weighted interpolation model. Focusing on the back-off
model performance for in Fig. 9(b), we observe a signif-
icant ( at 70% bigram rejection) improvement over
the unigram baseline: accuracy improves from 72.4% when
using only bigrams to around 75% at a back-off rate around
0.7. Weighted interpolation performs worse than the back-off

16The performance gap between and is also large for the bigram only
experiment, 66% vs. 68.5%. As mentioned in Section III-B, there are similarity
metric scaling issues when creating bigram ratings that are more pronounced
when using co-occurrence based similarities.
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model, up until it converges to the interpolation model (bigram
rejection rate under 10%). None of the proposed term selection
criteria perform better than the (simple) interpolation baseline.
Interpolation is the best performing model reaching an accuracy
of 75.9%, a small improvement over the back-off model (at
75%).
Overall, the inclusion of bigrams leads to significantly im-

proved performance over the unigram only models, with accu-
racy reaching 75.9%. Comparable results in literature are 62%
[48], 66% [49], 71% [14] and 72.8% (using cross-validation)
[50]. The interpolation model also achieved a correlation to
the ground truth of 0.61, compared to 0.5 achieved by the best
system in [9].

VI. CONCLUSIONS

We proposed a method of creating sentence affective ratings
based on the combination of partial affective ratings of word
-grams. At the core of this method is an affective lexicon
expansion algorithm capable of creating continuous -gram
affective ratings based on a set of manually labeled seed words
and semantic similarity ratings calculated over web data. This
algorithm achieves state-of-the-art results in lexical affective
tasks and is generic enough to work in languages other than
English, achieving high performance in creating ratings for
German words. Most importantly it does not require any
linguistic resources other than the affective ratings of a few
hundred words in each language. Sentence level ratings were
obtained from -gram ratings using linear and non-linear fusion
methods. Interpolation and back-off models were proposed
for combining unigram and bigram affective ratings. Overall,
a simple linear equation containing the weighted ratings of
all terms, both unigram and bigram, proved to be the best
performing solution achieving state-of-the-art performance in
the SemEval’07-Task14.
Future work should include further refinement of the lex-

icon creation model specifically targeted at the creation of
more accurate higher-order -gram ratings. Incorporating
morphosyntactic information into the model is also important
especially for morphologically rich languages. The current
word/sentence models can be used to create chunk ratings, e.g.,
for noun phrases or compound nouns, reducing the required
complexity of syntactic rules; a simple syntactic model can then
be used to model non-linear interaction between these chunks.
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