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Saliency Models for Text

Did you see/think money?
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Semantic Priming

n Semantic priming

q The presence of a word (prime) facilitates the cognitive processing 

of another word e.g., bank-money

n Semantic priming as explanation of false memories

q Remembering events never happened (or remember differently)

q Experiment: remembering words never presented in lists, e.g.,

chair and sleep

n Affective priming: emotional analogue of semantic priming

q E.g., fusion of semantic and affective spaces

[Collins and Loftus, A Spreading-Activation Theory of Semantic Processing, Psychological Review,1975]

[Roediger and McDermott, Creating False Memories: Remembering Words not Presented in Lists, Journal

of experimental psychology: Learning, Memory, and Cognition, 1995]

table seat legs … desk sofa wood chair

bed rest dream … snooze nap snore sleep
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Semantic & Affective Priming: Example

When semantic semantic priming only is not enough

n Consider the semantic sub-space activated for “life”

q Antonym (“death”) is also activated

n Antonymy embodies both semantic proximity and distance

n Easily recognized by humans

n Lexical models fail – need to also consider affective info

[Iosif and Potamianos, Feeling is Understanding: From Affective to Semantic Spaces, IWCS, 2015]
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Saliency Models for Text

n Application of saliency models: less-investigated area for text 

n Text captures attention in visual scenes

q E.g., in free viewing and search tasks in images

n Linguistic info used for detecting salient words in speech

q Saliency as intonational emphasis

q E.g., part-of-speech, freq.-based

[Cerf et al., Faces and Text Attract Gaze Independent of the Task: Experimental Data and Computer

Model, Journal of vision, 2009]

[Hirschberg, Pitch Accent in Context Predicting Intonational Prominence from Text, Artificial

Intelligence, 1993]

[Brenier et al., The Detection of Emphatic Words Using Acoustic and Lexical Features, Interspeech,

2005]
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Natural Language Proc.: Layers and Attention

Layers:

n Phonetics: salient words are emphasized

n Morphology: identify core components of words

n Lexical: words into part-of-speech classes

n Syntax: structurally relate words

n Semantics: identify relevant word senses

n Pragmatics: ground to situational context

n Dialogue/Discourse: identify salient spots in large linguistic 

units
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Saliency: Definition

n Saliency: refers to the properties of an entity

n Salient entity (aka target): distinguished from other entities

q Distinguishment within context (e.g., sentence, dialogue, etc.)

n Saliency detection: fundamental attentional mechanism

q Facilitation of learning and survival

q Perceptual & cognitive resources focused on “important” info

n Saliency detection via contrasting

q Physical properties, e.g., color, intensity, size, orientation, etc. 

n Also, other factors can contribute to saliency

q Emotional, motivational, cognitive  
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Top-down vs. Bottom-up Attention

n Top-down perspective: knowledge-driven

q A-priori knowledge about the target, e.g., its (anticipated) location

n Bottom-up perspective: stimuli-driven

q Detection of the target based on sensory saliency

n Overlap between those perspectives

n Synergy between top-down & bottom-up attention

q Hard to recognize entities in a scene & understand their relations

q Selective attention: optimization of attentional performance

n Cognitive load theory: 2 mechanisms of selective attention

q Perceptual: perceive or ignore stimuli

q Cognitive: process stimuli

[Sarter et al., The Cognitive Neuroscience of Sustained Attention: Where Top-Down Meets Bottom-Up,

Brain Research Reviews, 2001]
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Attention and Discourse Processing

BabyRobot project: www.babyrobot.eu
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Attention and Discourse Processing

n Discourse: piece of language behavior

q Typically, involves multiple utterances and participants

q Produced by: speakers or writers

q Consumed by: hearers or readers

n Constituents of a model of discourse

1. Linguistic structure: arrangement of words/phrases into 

utterances

2. Intentional structure: intentions of participants in discourse 

segments

3. Attentional structure: information about word and their relations, 

as well as saliency in discourse segments

[Grosz and Sidner, Attention, Intentions, and the Structure of Discourse, Computational

Linguistics, 1986]
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Attention and Discourse Processing

Discourse model as a composite of interacting constituents for:

n Assessment of the coherence of utterances

q Fit of an utterance wrt rest utterances

q Why it was said

q Its meaning

n Formulation of a basis of anticipations

q Facilitates the accommodation of new utterances

n The attentional structure has an additional role:

q Creation of the means for exploiting the lexical information in the 

linguistic and intentional structures during the generation and 

interpretation of individual utterances

[Grosz and Sidner, Attention, Intentions, and the Structure of Discourse, Computational Linguistics,

1986]
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Attention and Discourse Processing

Attention structure:

n An abstraction of participants’ focus (center of attention)

q Role: summarization of information from previous utterances 

required for subsequent processing

n Can be regarded as a stack of focus spaces

q A focus space is associated with a discourse segment

q A focus space contains the salient entities of the respective 

segment 

n Evolves with the unfolding of the discourse

q Additions and deletions of focus spaces

q Those operations are determined by the intentions that signify the 

initiations of new discourse segments

[Grosz and Sidner, Attention, Intentions, and the Structure of Discourse, Computational Linguistics,

1986]
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Models: Semantic Cognition

n Representation: based on semantic attributes

q Similarity: common vs. distinctive attributes; distributed 

representation in neural nets

[Tversky, Features of Similarity, Psychological review, 1977]

[Rogers and McClelland, Semantic Cognition: A Parallel Distributed Processing Approach, MIT press,

2004]
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Models: Distributional Representation of Meaning

How do we represent the meaning of a word?

n Possible approaches: use of resources, e.g., WordNet

q Disadvantages: manual effort, words as atomic symbols, etc

n Distributional hypothesis of meaning

q The meaning of a word w can be represented by its neighbors

“You shall know a word by the company it keeps”  - Firth

q Neighbors of w: words that co-occur with w in linguistic context

Toy corpus

“Cars are motor vehicles with four wheels; usually propelled by an internal combustion engine.
A tree is a tall perennial woody plant having a main trunk and branches forming a distinct elevated crown.

…

They built a large plant to manufacture a special type of engine for cars.

He reads his newspaper at breakfast.”
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Models: Distributional Representation of Meaning

Example of word-context matrix (aka Vector Space Model-VSP)

n Basic parameters of VSP

q Corpus pre-processing (e.g., tokenization, lemmatization, etc.)

q Size of context window (typically, 1-5)

q Weighting of contextual neighbors (e.g., freq.-based, mutual info.)

q Dimensionality reduction (e.g., Singular Value Decomposition)

Target
words

Contextual neighbors and co-occurrence counts for targets-neighbors

breakfas
t

cars crown large motor … tall trunk vehicles

engine 0 11 0 0 12 … 0 0 9

newspaper 5 0 0 0 0 … 0 0 0

plant 0 6 1 8 0 … 2 2 0

tree 0 0 1 1 0 … 4 3 0
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Models: Distributional Representation of Meaning

n Limitations of traditional VSP

q Increases wrt. vocabulary size

q High dimensional – storage issues

q Sparsity issues (especially for rare words)

n Solution: salient info in low-dimensional dense vectors

q Typically, 100-500 dimensions

n Recently: word embeddings based on neural networks

q Originally from the field of statistical language modeling

q Application to Distributional Semantic Models

q Examples: word2vec and GloVe

[Bengio et al., A Neural Probabilistic Language Model, Journal of Mach. Learning Research, 2003]

[Mikolov et al., Efficient Estimation of Word Representations in Vector Space, In Proc. ICLR, 2013]

[Pennington et al., GloVe: Global Vectors for Word Representation, In Proc. EMNLP, 2014]
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Models: Distributional Representation of Meaning

n word2vec: instead of counting word co-occurrences

q CBOW: predicts current word w(t) based on local context

q Skip-gram: predicts local context based on w(t)

n GloVe: can be regarded as a global skip-gram model

[Mikolov et al., Efficient Estimation of Word Representations in Vector Space, ICLR, 2013]

[Pennington et al., Glove: Global Vectors for Word Representation, EMNLP, 2014]
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Models: Distributional Representation of Meaning

n Related sub-tasks of lexical semantics (not exhaustive list):

q Similarity computation (e.g., “gem-jewel” vs. “gem-apple”)

q Analogy (“Greece:Athens” vs. “Italy:Rome”)

q Concept categorization (e.g., “cat” IsA “mammal”) 

q Verb selectional preferences (e.g., “eat an apple” vs. “eat a car”)

q Relation classification (e.g., “wealth-happiness” CauseEffect)

q Paraphrasing, summarization

q Affective analysis of text (e.g., positively valenced words)

n The notion of saliency exists in the aforementioned sub-tasks

q For a given word (or relation between words) the lexico-semantic 

space is filtered and only the lexically/semantically relevant sub-

spaces are activated 
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Models: Word Graphs-Introduction

n Basic idea: graphs (networks) as mental representation for 

language units and their relationships 

q Originates with early work in psychology

q Cognitive sciences

q Various applications in NLP

n Cognitive perspective: model of semantic memory

“The memory that a person calls upon in his everyday language behavior” - Quilian

n Various types of networks, e.g.,

q Word co-occurrence networks

q Syntactic dependency networks; semantic networks

[Freud, Psychopathology of Everyday Life, Payot, 1901]

[Quilian, Semanic Memory, In M. Minsky (ed.) Semantic Information Processing, 1968]

[Mihalcea and Radev, Graph-based Natural Language Processing and Information Retrieval,

Cambridge University Press, 2011]
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Models: Word Co-occurrences

n Extracted from the abstract of a scientific article

q Enables keyword extraction

[Mihalcea and Tarau, TextRank: Bringing Order into Texts, ACL, 2004]
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Models: Syntactic Dependencies

q Solid edges: based on surface syntactic structure

q Dashed edges: based on verb “stopped” and its arguments

[Jijkoun and De Rijke, Learning to transform linguistic graphs, HLT-NAACL, 2007]
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Models: Semantic Similarity Graphs

n Edges: semantic sim. between nodes (subj. to thresholding)

q Similarity computation via distributional semantic models

q Enables the discovery of semantic cliques

[Athanasopoulou et al., Low-Dimensional Manifold Distributional Semantic Models, COLING, 2014]
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Models: Multi-Document Summarization

n Nodes: sentences (d*s*) from different documents (d*s*)

n Edges: similarity between sentences (subj. to thresholding)

[Erkan and Radev, LexRank: Graph-based Lexical Centrality as Salience in Text Summarization,

JAIR, 2004]
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Models: Word-level Semantic-Affective Mapping

[Malandrakis et al., Distributional Semantic Models for Affective Text Analysis, IEEE TASLP, 2013]
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Models: Sentence-Level Sentiment Analysis

n Sentimental polarity of sentences

q Based on parse trees

q Use of DNN for modeling compositional effects

[Socher et al., Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank,

EMNLP, 2013]
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Models: Story Analysis

Example: analysis of children’s tales (here: “Hans in Luck”)

n Identification of:

q Story characters and speakers; attribution of utterances to speakers

q Speakers’ gender and age

q Emotional utterances (positive – neutral - negative) 

[Iosif and Mishra, From Speaker Identification to Affective Analysis, EACL, 2014]
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Models: Movie Script Summarization

Example from “Salience of the lambs” 

q Important scenes involve main characters

q Summarization: computation of the optimal chain of important 

scenes

[Gorinski and Lapata, Movie Script Summarization as Graph-based Scene Extraction, HLT-NAACL, 

2015]
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Text-based Features: Overview

n Various types of info extracted from the layered NLP model

n Two basic computational tasks (often application-specific) 

q Identify important entities and score their saliency

q Identify relationships between entities and link them

n Examples of entities

q Topic-specific words, nouns, pronouns, named entities, 

sentimental words

q Tools: text analytics, PoS tagging, named entity recognition, 

syntactic parsing, co-reference resolution, affective lexica, etc.

n Examples of cues indicating relationships between entities

q Proximity in discourse, actors in semantic relations

q Tools: discourse analysis, semantic role label., (+ heuristics), etc.
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Text-based Features: Doc Summarization

Word importance

n Word frequency and probability: freq. as importance indicator

q Consider document length: use word probability instead of absolute freq.

n Term Freq. – Inverse Doc. Freq.

q c(w): frequency of word w

q d(w): num. of docs in which w occurs; D: num. of docs in collection

n Topic signatures

q Words being frequent in text I but rare wrt background corpus B

q A word w is considered as a topic signature if P(w|I) > P(w|B)

[Nenkova and McKeown, Automatic Summarization, Foundations and Trends in Information Retrieval,

2011]
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Text-based Features: Doc Summarization

Sentence importance

n Proportion of topic signatures in sentence

n Centroid-based summarization

q Documents are represented by a sentence-level centroid

q Sentence importance: based on the distance from the centroid

n Graph-based: sentences represented as nodes

q Centrality-based metrics

n Machine learning based

q Features: discourse markers, terms, sentence length, topic 

signatures, etc.

q Models: HMM, AdaBoost, SVM, etc.

[Nenkova and McKeown, Automatic Summarization, Foundations and Trends in Information Retrieval,

2011]
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Text-based Features: Node Centrality

n Nodes: words/sentences/etc

n Edges: relations between nodes 

q Many types of relations: structural up to linguistic

q Applications: word sense disambig., summarization, plot analysis, etc. 

n Central node: maximally connected to all other nodes

q Centrality: as a measure of the influence of a node wrt the information 

flow over the graph

n Various measurements of node centrality

q Concise overview via NLP perspective in

q Basic approach: in-degree centrality

n Number of edges terminating in a node

n Normalized by the maximum degree

[Navigli and Lapata, Graph Connectivity Measures for Unsupervised Word Sense Disambiguation,

International Joint Conference on Artificial Intelligence, 2007]
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Text-based Features: Node Centrality

n Eigenvector centrality

q Basic idea: not all edges are of equal importance

q Score nodes wrt the importance of their edges

PageRank (PR)

n Sum over the edges of node m: (m,n) ∈ E

n Outdegree: number of edges leaving a node

n 1-k: prob. to randomly select a node scored with 1/|V|

Hypertext Induced Topic Selection (HITS)

n Hub and authority value for node m: H(m) and A(m)

n Good hub: node pointing to many good authorities

n Good authority: node pointed by many good hubs

[Brin and Page, Anatomy of a Large-scale Hypertextual Web Search Engine, WWW ’98]

[Kleinberg, Authoritative Sources in a Hyperlinked environment, ACM-SIAM ‘98]
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Text-based Features: Node Centrality

n Closeness centrality

q Node is important if it is close to other nodes – aka Key Player Problem

n V: number of nodes

n d(m,n): shortest distance between nodes m and n

n Betweeness centrality

q Node is important if it is involved in many paths (compared to total paths)

n V: number of nodes

n σxy: number of shortest paths from node x to node y

n σxy(m): number of shortest paths from x to y passing through node m

n Normalize by (|V|-1)(|V|-2)

[Borgatti, Identifying Sets of Key Players in a Network, Conference on Integration of Knowledge

Intensive Multi-Agent Systems, 2003]

[Freeman, Centrality in Networks: I. Conceptual Clarification, Social Networks, 1979]
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Text-based Features:  Script Summarization

n Script summarization: select chain of scenes representing 

movie’s most important content 

q Scene: unit of action associated with one place/action

q Scene boundaries: available in the script via discourse markers

[Gorinski and Lapata, Movie Script Summarization as Graph-based Scene Extraction, HLT-

NAACL, 2015]
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Text-based Features:  Script Summarization
n Script represented as M(Sn, Cm)

q Set of scenes Sn={s1, s2, …, sn}; Set of characters Cm={c1, c2, …, cm}

n Set Sk={s1, s2, …, sk} of ordered, consecutive scenes

λ1, λ2, λ3: weights

q P(Sk): scene progression, i.e., preserve story coherence

n Basic idea: include scenes that follow a scene of important character 

q D(Sk): scene diversity, i.e., avoid redundancy

n Basic idea: compute the diversity between two scenes si and si+1

q I(Sk): scene importance, i.e., selection of important scenes

n Basic idea: scene importance as the proportion of important 

characters appearing in it

q Identification of main characters: centrality-based wrt script graph  

[Gorinski and Lapata, Movie Script Summarization as Graph-based Scene Extraction, HLT-NAACL,

2015]
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Text-based Features: Semantic-Affective Mapping

n Assumption: the affective score of a word can be expressed as a 

linear combination of the affective scores of seed words weighted by 

semantic similarity and trainable weights ai

q Affective dimensions: valence, arousal, dominance

q Example for valence

[Malandrakis et al., Distributional Semantic Models for Affective Text Analysis, IEEE Transactions on

Audio, Speech, and Language Processing, 2013]

[Turney and Littman, Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word

Corpus, arXiv preprint cs/0212012, 2002]
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Text-based Features: Semantic-Affective Mapping
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Results from COGNIMUSE: Text Only

n Classify documentary subtitles as salient vs. not salient

q Ground truth annotations wrt all modalities

q Here: exploit only text (subtitles - English)

n Text-derived features

q Lexico-syntactic (PoS classes, features related to stylistics)

q Word informativeness (variant of TF-IDF)

q Word centrality

q Word affective scores (based of semantic-affective mapping)

q Word saliency scores (modified semantic-affective mapping)

n Dataset: travel documentaries
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Results from COGNIMUSE: Text Only

n Examples from documentary about London

q Word informativeness

n High: “queen”, “backpack”, “wine”

n Mid/Low: “London”, “city”, “beer”

q Word centrality

n High: “London”, “wine”, “music”

n Mid/Low: “backpack”, “Westminster”, “Brittania”

n Summary of experimental findings

q Top performance: all features (fuse classifiers via majority voting)

q Best perf individual features: word informativeness, lexico-synt.

q Cues from other modalities needed for improving performance
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Models: Attention-based Deep Neural Networks

n Attention-based convolutional NN for relation extraction

[Shen and Huang, Attention-Based Convolutional Neural Network for Semantic Relation 

Extraction, COLING, 2016]
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Models: Attention-based Deep Neural Networks

n Neural nets (NN): successfully applied for capturing several 

linguistic phenomena, e.g., X but Y, negation, etc.

q Addressing such phenomena is essential for analyzing complex 

linguistic structures, e.g., phrases and sentences

n Recursive NN (RNN): applied over sentence syntactic trees 

q Capture structural information: from word- to phrase-level

n Example: Bidirectional RNN (two computation phases)

q Upward (bottom-up),  and downward (top-down)

q Use case: Stanford Sentiment Treebank (movie reviews)

Structural attention mechanism also incorporated for the selection of 

informative tree nodes

[Kokkinos and Potamianos, Structural Attention Neural Networks for Improved Sentiment 

Analysis, EACL, 2017]
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Grounding Language Understanding

n Often language needs additional information to be understood

q From contextual environment involving other modalities

q Also referred to as the symbol grounding problem

n Example: deixis (person, spatial, temporal)

By Wesn - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23637208

[Harnad, The Symbol Grounding Problem, Physica D: Nonlinear Phenomena, 1990]

[Lyons, Deixis, Space and Time, Semantics, 1977]


