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‘ Outline

s Motivation
o perceptual importance of frequency

s AM-FM and SMAC features

o Instantaneous amplitude and frequency signals
o Time vs frequency domain estimation
o Spectral Moments features

m Recognition Experiments




‘ Perceptual importance of

frequency

= Chimaeric sounds reveal dichotomies in

auditory perception
o [Smith Z. M., Delgutte B. and Oxenham A. J., Nature 2002]
o [http://research.meei.harvard.edu/chimera/index.html]

= Speech recognition with amplitude and
frequency modulations
o [Zeng F.G. et al, PNAS 2005]

= Our work

o [ICASSP 2009, ASRU 2009]
o recent results




'The AM-FM speech model

= The speech signal is modeled as a sum of
resonant signals each one being an AM-F VI
composite signal

N

m The demodulation problem
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‘ Chimaera synthesis

= Filterbank analyis
o 80-8,820 Hz
o number of filters: variable

:@ Multi-band chimaeLa

7~ Sound 1 envelope,
Sound 2 fine structure

= Hilbert Trasform —
Analytic Signal
o amplitude envelope [ e
o fine structure: cos(o(t)) Ty ” oo

= [wo input signals

o envelope from 18t
o fine structure 2nd H

[Smith et al 2002]




‘ Chimaeras reception results:
Speech-Noise, Speech- Speeoh

Speech receptlon
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‘ Chimaeras reception results:
Speech-Noise, Speech-Speech

= Reception highly depends on number of bands

= Speech envelope — Noise fine structure
o reception improves as number of bands increases
o good performance for very few bands 4

= Noise envelope — Speech fine structure
o reverse behaviour
0 good reception with only 1-2 bands

s Speech — Speech
o envelope dominates fine structure
= Amplitude conveys ‘what’ information




‘ Chimaeras reception results:

Melody-Melody
= Reversal of the relative 100, Melodyrecogniten_____
importance between S Y @@ g
envelope and fine 5 8ol }b ,'
structure S 70|
= Melody reception from £ eo; Y
fine structure up to 32 ¢ sof 3 Envelope I P
bands & 40 ‘% .
= Crossover point around & % .
40 bands & 2 At
. 10+ | _ - \a
o bandwidths become ¢ ¢ < w@*} Yy
narrower than the critical 2 4 % 16 2432 4864

bandwidths Number of frequency bands




‘ Summary of findings

m Speech envelope
o conveys phonetic information (‘what’)
s Fine structure
o less phonetic information
o pitch perception / localization (‘where’)
o rhyme, melody
] LiStening tests [Zeng et al, 2005]
2 AM performs well in noise free situations
o FM improves performance in noise




Acoustic representation for speech
recognition




‘ Related work

s VIFCC — standard acoustic representation

o [Davis & Mermelstein 1980]
o energy measure with a triangular mel filterbank with 50% overlap

s AM-FM Features

o [Dimitriadis et al 2005, 2006]
o few bands — appended to MFCC vector
o FMP — bandwidth over frequency ratio

m Frequency representation

o [Paliwal et al 2003, Chen et al 2004]
o triangular linear filterbank with 50% overlap (spectral centroids)




‘ Acoustic representation

= [Ime domain

o amplitude (energy)

o frequency
o bandwidth

= Frequency domain
o Spectral moments

s Parameterization for ASR front-end
o decorrelation (DCT)
o filterbank




‘ Time domain

Speech signal

Gabor filterbank

(time domain) \ \

Resonant

signal

Demodulation [—WW%—]
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Instantaneous A .
amplitude and
frequency '
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Estimation of Amplitude, Frequency and Bandwidth




‘ Estimation of Amplitude,
Frequency and Bandwidth

= Mean squared amplitude (energy measure)
Ali) = log > _ (a;[n))*

= Mean weighted frequency (biased)
Ffi] = > nco (fz-]gn] — F) (;Lz-[n])2 _ Zif;?v filn] (%-[7;])2 r
2 n—o (ai[n]) D n—o (ai[n])
s Bandwidth

BIj - (zifo (7In] =~ B (afrm)’] ) " e <2513<a[n]/27;>2> 5
S (aln]) > (aln)




‘ Frequency domain

Speech signal

Framing

Narrow-band
spectrogram

Gabor filterbank
(frequency
domain)

Spectral Moment Estimation




‘ Spectral Moment Estimation

= Band passed signal of k-th filter
zp(n) = x(n) * hy(n) < Xy(w) = X(w)Hi(w)

= Spectral moment of order m

= / | X (W) w™dw
0

s Cenftral spectral moment
(k) = / | Xk (W) (w — wp)™dw

o Normallzed spectral moments
N0 = e VO = G




‘ Time and Frequency domain duality
[see work of Cohen, Boashash]

= Amplitude — Energy (zero order moment)
> (@) = > | Xk[Q)17
A SO=NY

s Frequency — 18t spectral moment

> fuln] (ai[n))’ 2 [ X[
S (ax[n])? > | Xk (0] ]2

F, & N'=uw, + N!

s Bandwidth — 2"d spectral moment ...




qstys Ot spectral moment

dSO(k) B d T . +(0) e—’Y(w—wk)2/40‘2
dwy, dwk/O [ Xk(w)[7dw —d|HC’Zw(k ) _ (ﬁ/2a)vd o
+ = (7/20%)(w — wi) [Hy ()]
/ |X ‘7d|Hdwk k
ds(k) I
el / X @) H @) (@~ w)d
20* dS°(k)
g T 1
~ — )| (w — wg)dw ——236(16) —> SY(k) ~
e [ T k)= ==

|
20 dS°(k)  20” dlog(S°(k))
vSO(k) dw, dwy,

N (k) ~




qstys Ot spectral moment

= Proportional to the log power spectrum

N (k) ~ 20 dlog(S°(k))

7y dwy,

= Depends on

o the y constant (usually is 2)
o the bandwidth of the filter

= The energy information is lost
o spectral tilt information not directly observable




‘ The role of the filter’'s bandwidth

o

i)
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= Filter’'s bandwidth

o wider — formants
o narrower — pitch harmonics

a— 0= N (k)— 0= N'(k) — w,




2nd spectral Moment

‘ Speech Pyknogram
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‘ The decorrelation problem

m Correlation Coefflc:lents N a smqle sentence

A: frequency
B: DCT of frequency
C: amplitude
D: DCT of amplitude

Amplitude
components are
highly correlated

Frequency
components do not
require correlation

& bands (test/dr1/faksDisal) Correla coefiicients of Ceptral FreqB / 16 bands (tes faks0/sal)




Recognition experiments




' Optimizing the filter's bandwidth

= TIMIT (61 phonemes)
o 3 state HMMs / 16 Gaussians

= Bandwidth — frequency overlap

o frequency requires higher overlap ~70%
o amplitude is not seriously affected

Filterbank Overlap 50%  60%  70%  80%

Aper 60.09 60.38 59.95 ©58.86
F, 49.57 59.40 61.21 60.86
By, 3737 46.51 51.14 53.03




‘ Number of filters

=  Amplitude in dB and
16 20 26 transformed with DCT

(equivalent to MFCC)
MFCC 60.20 60.58 60.66 Frequency
Apcr 60.09 60.68 61.16 . | oor

= 70% overlap
Fw 01.21 61.34 50 88 = outperforms amplitude

= Bandwidth features have a

N! (SM) 60.54 61.02 60.38  notworhy performance

(70% overlap, and no DCT)

By SLM 5122 4905 * JREis iy
B, 48.17 47.67 44.14  spectral moment
by 43.06 49.37 48.15

Bet 50.49 51.31 50.95




‘ Energy and spectral envelope

16 20 20

MFCC+E 64.06 64.28 64.10
MFCC+CO0 64.16 64.29 64.24
F,+E 63.78 63.99 62.55
F,,+C0 64.28 64.11 62.73
SM+C0 64.17 64.41  63.60
SMAC (SM+C0-C1) 64.82 64.80 64.58
SM+C0-C2 64.74 65.19 64.84

SM+C0-C3 64.64 65.06 65.00




'SMAC

= Spectral Moment features Augmented by low
order Cepstral coefficients

o first order normalized central spectral moment
o plus few cepstral coefficients

= Key advantages
o retain the feature vector in the frequency domain
o zero mean (due to the central moment)
o robustness




' AURORA 2

= Connected word recognition task
o word HMMs / 16 states
o various types and levels of noise

n SMAC: 12 filters up to 4 kHz + CO + C1

o significant gain for all noise levels
20 dB 15 dB 10 dB 5 dB

MFCC (39) 94.07 85.04 65.51 38.45
PLP (39) +0.09 +0.26 +1.63 +2.73
RASTA-PLP (39) +2.59 +7.00 +11.62 +6.73
SMAC (42) +2.98 +8.01 +13.27 +8.03

(3.17%) (9.42%) (20.26%) (20.88%)




' AURORA 3

= Car noise (Spanish and lItalian tasks)

2 WM (well-matched), MM (medium-mismatched),
HM (high-mismatched) conditions

o same configuration as in the AURORA 2 task
m Performance improvement from WM to HM

Spanish Task Italian Task
WM MM HM WM MM HM
MFCC (39) 86.88 73.72 42.23 93.64 82.02 39.84
PLP (39) +5.16 +10.12 +10.49 -5.40 -9.51 -0.86
RASTA-PLP (39) +47.06 +14.53 +30.70 -9.88 -6.75 +23.49
SMAC (42) +7.37 +15.49 +35.45 -5.50 +0.28  +11.79

(8.48%) (21.01%) (83.95%) (-5.87%) (0.34%) (29.56%)

Tuesday, May 31, 2011



‘Wiener Filtering

= Noise suppression using WF
= SMAC still outperforms MFCC

AURORA 2 20 dB 15 dB 10 dB 5 dB
WF+MFCC (39)  97.70 95.31 89.13 74.37
WF+SMAC (42) -0.18 0.38 1.62 3.09
(-0.18%) (+0.40%) (+1.82%) (+4.15)
AURORA 3 Spanish Task Italian Task
WM MM HM WM MM HM
WEF+MFCC (39) 94.84 88.31 78.32 95.89 89.81 73.52
WF+SMAC (42) +40.03 +42.78 +3.33 -4.46 -3.39 -11.29

(0.03%) (3.15%) (4.25%) (-4.65%) (-3.77%) (-15.35)

[Dimitriadis et al 2007]




Improved instantaneous frequency
estimation




‘ Feature Estimation Methods

= Time-domain: average weighted
instantaneous frequency (AlF)

= Frequency domain:
o spectral moment (SM)
0 spectral derivative (SpD)

= Zero-crossings (ZC)




‘ Feature Trajectories & Performance
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s Performance on TIMIT (+noise), Aurora 2,3 tasks:

= SM/SpD is the top performer, closely followed by AlF,
ZC is significantly worse




‘ Relation with auditory front-ends

= Zero-crossings
[Ghitza 1986, Kim et al 1999]

= Cochlear model, Auditory Spectrogram
[Yang et al 1992, Wang & Shamma 1994, Ru 2001]

1. Auditory filtering: yi(t,z) = s(t)* h(t:z)

2. Time-differentiation & averaging y2(t, ) g(Oy (t, ) * w(t)

3. Frequency differentiation & averaging  y3(t, ) = Jd.y(t. ) *, vix)




Filterbank Arrays

= Average (in frequency) inst. frequency and
amplitude estimates over neighboring filters

S (L2277 £(¢,K)alt, k)] *dt)
2k (ft°+T[ (t, k)]2dt)

= Inverse variance weighting (variance estimated
over neighboring filters)

A —

o f(6)[a(t)]" for ()™t
0T g ()] vy (£)]

n,m —




‘ IF estimation of synthetic resonance
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IF estimation of real speech signal
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‘ Results

= Estimation error variance reduction using
filterbank arrays
o X 4-7 times for frequency and bandwidth estimates,
e.g., AlF, using averaging of neighboring filters
o X 1.5-2 times using inverse variance weighting

= Speech recognition

o FMP feature set: second spectral moment over first
spectral moment [Dimitriadis et al. 2005]

o When used as stand-alone feature using filterbank arrays
improves performance significantly: 40% => 60%

(AURORA 3 Spanish Task)




‘ Summary

= The SMAC frequency-domain front-end

o equivalent performance in clean recording
conditions

2 more robust in noisy situations

= Parameterization
o larger frequency overlap (wider filters)
o the SM vector remains in the frequency domain
o addition of few cepstral coefficients




‘ Discussion

= Equivalence between frequency and energy
so what is different?

o more robust in a variety of noise types
a2 VTLN, spectral masking, frequency warping, etc

= \What else is to be investigated?
o theoretic noise analysis
o alternative fusion of frequency and energy
2 higher order moments
o other speech applications

Tuesday, May 31, 2011



