Spectral Moment and Micro-Modulations Features for Robust ASR

Prof. Alexandros Potamianos Technical University of Crete

> Visit @ AT&T Labs June 5, 2012

Acknowledgements

Ph.D. work of <u>Dr. Pirros Tsiakoulis</u> (now @ Cambridge University) in collaboration with Dr. Dimitrios Dimitriadis @ NTUA/AT&T

Publications

- P. Tsiakoulis, A. Potamianos, and D. Dimitriadis, "<u>Spectral Moment Features Augmented by</u> <u>Low Order Cepstral Coefficients for Robust ASR</u>," *IEEE Signal Processing Letters*, vol. 17, no. 6, pp. 551-554, June 2010
- P. Tsiakoulis, A. Potamianos, and D. Dimitriadis, "<u>Short-time instantaneous frequency and</u> <u>bandwidth features for speech recognition</u>," in *Proc. Automatic Speech Recogn. and Underst. Workshop* (ASRU-2009), Merano, Italy, Dec. 2009.
- 3. A. Potamianos and P. Tsiakoulis, "Robust Instantaneous Frequency and Bandwidth Estimation using Filterbank Arrays", submitted to InterSpeech 2012.
- 4. D. Dimitriadis, P. Maragos, and A. Potamianos, "<u>Robust AM-FM features for speech</u> recognition," *IEEE Signal Processing Letters*, vol. 12, pp. 621-624, Sept. 2005.

Outline

Motivation

perceptual importance of frequency

AM-FM and SMAC features

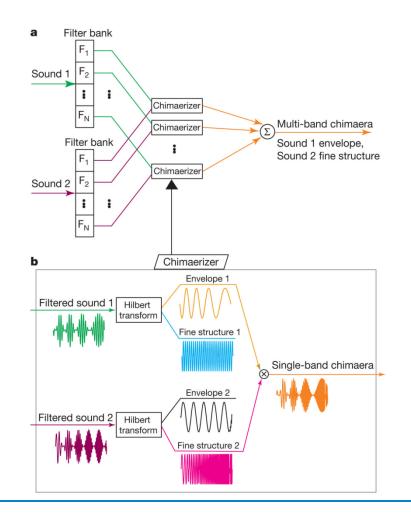
- Instantaneous amplitude and frequency signals
- Time vs frequency domain estimation
- Spectral Moments features
- Recognition Experiments

Perceptual importance of

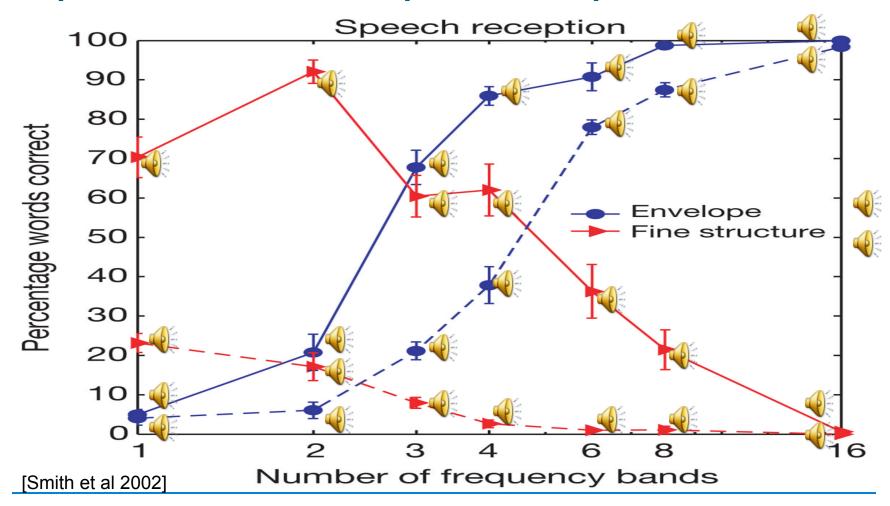
frequency

- Chimaeric sounds reveal dichotomies in auditory perception
 - [Smith Z. M., Delgutte B. and Oxenham A. J., Nature 2002]
 - [http://research.meei.harvard.edu/chimera/index.html]
- Speech recognition with amplitude and frequency modulations
 - [Zeng F.G. et al, PNAS 2005]
- Our work
 - ICASSP 2009, ASRU 2009]
 - recent results

The AM-FM speech model

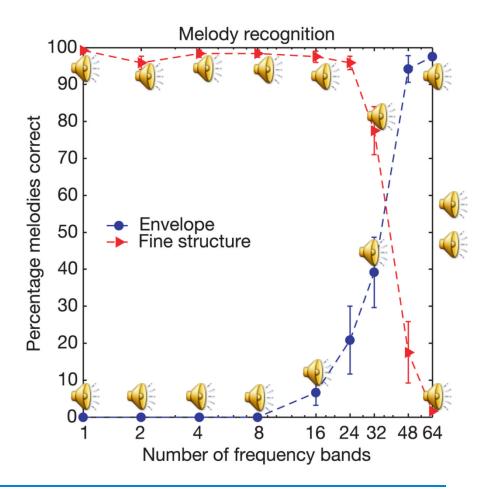

The speech signal is modeled as a sum of resonant signals each one being an AM-FM composite signal

The demodulation problem


Chimaera synthesis

- Filterbank analyis
 80-8,820 Hz
 - number of filters: variable
- Hilbert Trasform Analytic Signal
 - amplitude envelope
 - fine structure: $cos(\phi(t))$
- Two input signals
 - envelope from 1st
 - fine structure 2nd

Chimaeras reception results: Speech-Noise, Speech-Speech



Chimaeras reception results: Speech-Noise, Speech-Speech

- Reception highly depends on number of bands
- Speech envelope Noise fine structure
 - reception improves as number of bands increases
 - good performance for very few bands 4
- Noise envelope Speech fine structure
 - reverse behaviour
 - good reception with only 1-2 bands
- Speech Speech
 - envelope dominates fine structure
- Amplitude conveys 'what' information

Chimaeras reception results: Melody-Melody

- Reversal of the relative importance between envelope and fine structure
- Melody reception from fine structure up to 32 bands
- Crossover point around 40 bands
 - bandwidths become narrower than the critical bandwidths

Summary of findings

- Speech envelope
 - conveys phonetic information ('what')
- Fine structure
 - less phonetic information
 - pitch perception / localization ('where')
 - rhyme, melody
- Listening tests [Zeng et al, 2005]
 - AM performs well in noise free situations
 - FM improves performance in noise

Acoustic representation for speech recognition

Related work

MFCC – standard acoustic representation

- Davis & Mermelstein 1980]
- energy measure with a triangular mel filterbank with 50% overlap

AM-FM Features

- Dimitriadis et al 2005, 2006]
- few bands appended to MFCC vector
- FMP bandwidth over frequency ratio

Frequency representation

- [Paliwal et al 2003, Chen et al 2004]
- triangular linear filterbank with 50% overlap (spectral centroids)

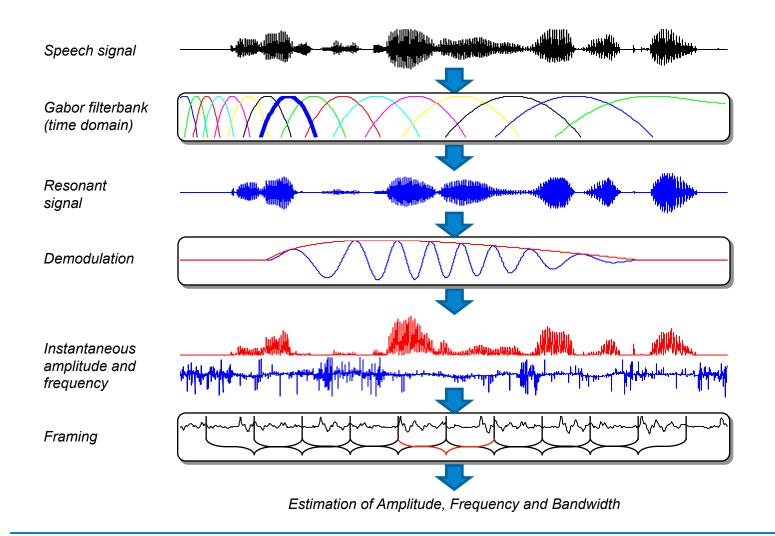
Acoustic representation

Time domain

amplitude (energy)

frequency

bandwidth


Frequency domain

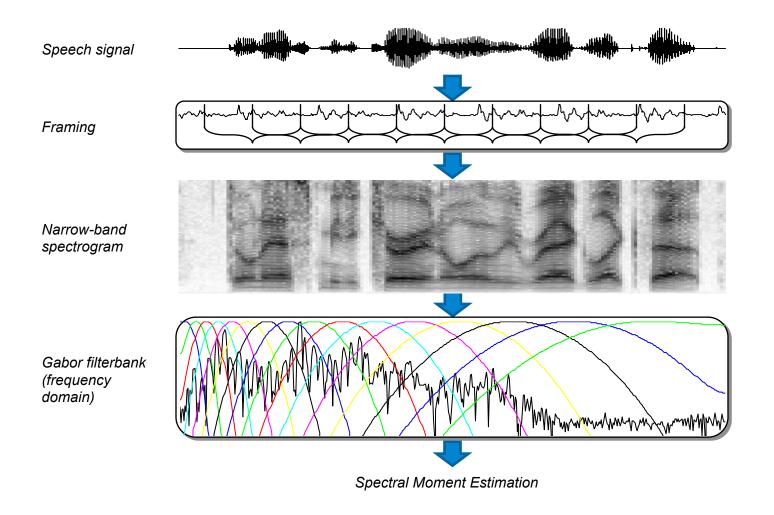
Spectral moments

- Parameterization for ASR front-end
 - decorrelation (DCT)

filterbank

Time domain

Estimation of Amplitude, Frequency and Bandwidth


- Mean squared amplitude (energy measure) $A[i] = \log \sum_{n=0}^{N} (a_i[n])^2$
- Mean weighted frequency (biased)

$$F_w[i] = \frac{\sum_{n=0}^{N} \left(f_i[n] - F_i\right) \left(a_i[n]\right)^2}{\sum_{n=0}^{N} \left(a_i[n]\right)^2} = \frac{\sum_{n=0}^{N} f_i[n] \left(a_i[n]\right)^2}{\sum_{n=0}^{N} \left(a_i[n]\right)^2} - F_i$$

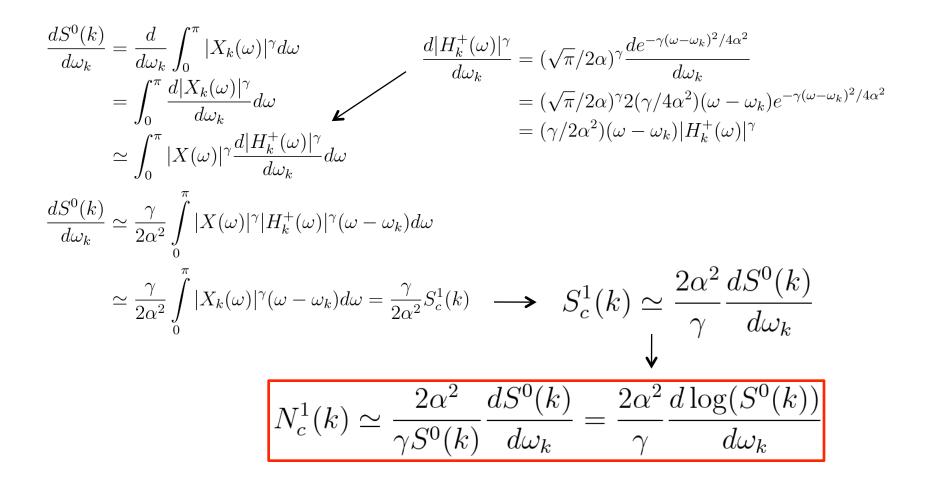
Bandwidth

$$B_w^f[i] = \left(\frac{\sum_{n=0}^N \left[(f[n] - F_i)^2 \left(a[n] \right)^2 \right]}{\sum_{n=0}^N \left(a[n] \right)^2} \right)^{\frac{1}{2}} \quad B_w^a[i] = \left(\frac{\sum_{n=0}^N (\dot{a}[n]/2\pi)^2}{\sum_{n=0}^N \left(a[n] \right)^2} \right)^{\frac{1}{2}}$$

Frequency domain

Spectral Moment Estimation

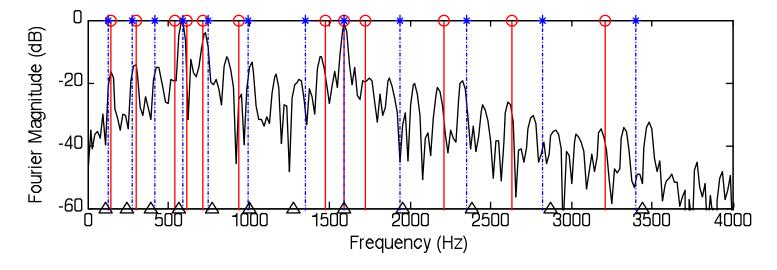
- Band passed signal of k-th filter $x_k(n) = x(n) * h_k(n) \leftrightarrow X_k(\omega) = X(\omega)H_k(\omega)$
- Spectral moment of order m $S^{m}(k) = \int_{0}^{\pi} |X_{k}(\omega)|^{\gamma} \omega^{m} d\omega$


Time and Frequency domain duality [see work of Cohen, Boashash]

- Amplitude Energy (zero order moment) $\sum (a_k[n])^2 \leftrightarrow \sum |X_k[\Omega_n]|^2$ $A \leftrightarrow S^0 \equiv N^0$
- Frequency 1st spectral moment $\frac{\sum f_k[n] (a_k[n])^2}{\sum (a_k[n])^2} \leftrightarrow \frac{\sum \Omega_n |X_k[\Omega_n]|^2}{\sum |X_k[\Omega_n]|^2}$

 $F_w \leftrightarrow N^1 \equiv \omega_k + N_c^1$

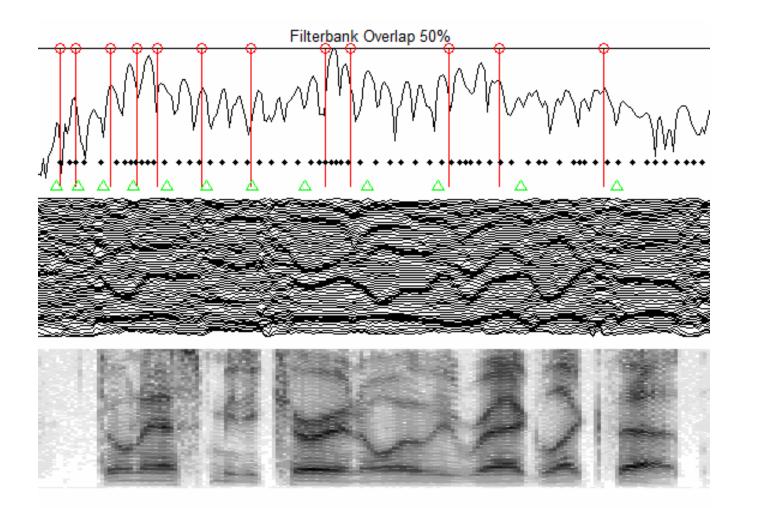
Bandwidth – 2nd spectral moment …


1st vs 0th spectral moment

1st vs 0th spectral moment

- Proportional to the log power spectrum $N_c^1(k) \simeq \frac{2\alpha^2}{\gamma} \frac{d\log(S^0(k))}{d\omega_k}$
- Depends on
 - the γ constant (usually is 2)
 - the bandwidth of the filter
- The energy information is lost
 - spectral tilt information not directly observable

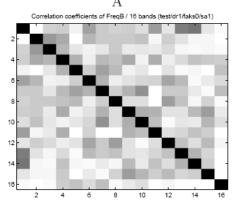
The role of the filter's bandwidth

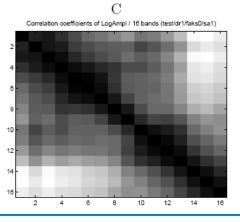

Filter's bandwidth

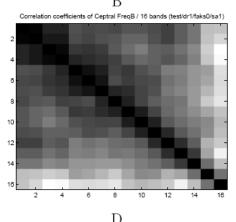
 \Box wider \rightarrow formants

 \Box narrower \rightarrow pitch harmonics

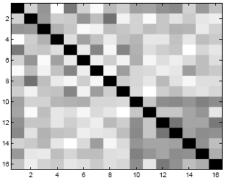
$$\alpha \to 0 \Rightarrow N_c^1(k) \to 0 \Rightarrow N^1(k) \to \omega_k$$


Speech Pyknogram: 2nd spectral Moment




The decorrelation problem

Correlation coefficients in a single sentence


- A: frequency
- B: DCT of frequency
- C: amplitude
- D: DCT of amplitude
- Amplitude components are highly correlated
- Frequency components do not require correlation

Correlation coefficients of Ceptral LogAmpl / 16 bands (test/dr1/faks0/sa1

Recognition experiments

Optimizing the filter's bandwidth

TIMIT (61 phonemes)

- 3 state HMMs / 16 Gaussians
- Bandwidth → frequency overlap
 - frequency requires higher overlap ~70%
 - amplitude is not seriously affected

Filterbank Overlap	50%	60%	70%	80%
A_{DCT}	60.09	60.38	59.95	58.86
F_w	49.57	59.40	61.21	60.86
B_w	37.37	46.51	51.14	53.03

Number of filters

	16	20	26
$\begin{array}{c} \text{MFCC} \\ A_{DCT} \end{array}$	$60.20 \\ 60.09$	$\begin{array}{c} 60.58\\ 60.68\end{array}$	$\begin{array}{c} 60.66\\ 61.16\end{array}$
$ \begin{array}{c} F_w\\ N_c^1 \ (SM) \end{array} $	$\begin{array}{c} 61.21 \\ 60.54 \end{array}$	$\begin{array}{c} 61.34\\ 61.02 \end{array}$	$59.88 \\ 60.38$
$B_w \\ B_w^f \\ B_w^a \\ B_w^{a+} \\ B_w^{a+}$	51.14 48.17 48.06 50.49	51.22 47.67 49.37 51.31	$\begin{array}{r} 49.05 \\ 44.14 \\ 48.15 \\ 50.95 \end{array}$

- Amplitude in dB and transformed with DCT (equivalent to MFCC)
- Frequency

- 70% overlap
- no DCT
- outperforms amplitude
- Bandwidth features have a notworthy performance (70% overlap, and no DCT)
- We focus on frequency based utilizing the first spectral moment

Energy and spectral envelope

	16	20	26
MFCC+E MFCC+C0	$\begin{array}{c} 64.06\\ 64.16\end{array}$	$\begin{array}{c} 64.28\\ 64.29 \end{array}$	$64.10 \\ 64.24$
$\frac{F_w + E}{F_w + E}$	63.78	63.99	62.55
$F_w + C0$ SM+C0	64.28 64.17	$\begin{array}{c} 64.11 \\ 64.41 \end{array}$	$62.73 \\ 63.60$
SMAC (SM+C0-C1)	64.82	64.80	64.58
SM+C0-C2 SM+C0-C3	$64.74 \\ 64.64$	65.19 65.06	64.84 65.00

SMAC

- Spectral Moment features Augmented by low order Cepstral coefficients
 - first order normalized central spectral moment
 - plus few cepstral coefficients
- Key advantages
 - retain the feature vector in the frequency domain
 - zero mean (due to the central moment)
 - robustness

AURORA 2

Connected word recognition task

- word HMMs / 16 states
- various types and levels of noise
- SMAC: 12 filters up to 4 kHz + C0 + C1

significant gain for all noise levels

	20 dB	$15 \mathrm{dB}$	10 dB	5 dB
MFCC (39)	94.07	85.04	65.51	38.45
PLP(39)	+0.09	+0.26	+1.63	+2.73
RASTA-PLP (39)	+2.59	+7.00	+11.62	+6.73
SMAC (42)	+2.98	+8.01	+13.27	+8.03
	(3.17%)	(9.42%)	(20.26%)	(20.88%)

AURORA 3

Car noise (Spanish and Italian tasks)

- WM (well-matched), MM (medium-mismatched), HM (high-mismatched) conditions
- same configuration as in the AURORA 2 task
- Performance improvement from WM to HM

	Spanish Task			Italian Task			
	WM	MM	HM	WM	MM	HM	
MFCC (39)	86.88	73.72	42.23	93.64	82.02	39.84	
PLP (39)	+5.16	+10.12	+10.49	-5.40	-9.51	-0.86	
RASTA-PLP (39)	+7.06	+14.53	+30.70	-9.88	-6.75	+23.49	
SMAC (42)	+7.37	+15.49	+35.45	-5.50	+0.28	+11.79	
	(8.48%)	(21.01%)	(83.95%)	(-5.87%)	(0.34%)	(29.56%)	

Wiener Filtering

Noise suppression using WF

SMAC still outperforms MFCC

RA 2	20 dB	15 dB	10 dB	5 dB	
CC (39)	97.70	95.31	89.13	74.37	
AC (42)	-0.18 (-0.18%)	0.38 (+0.40%)	$1.62 \\ (+1.82\%$	3.09) (+4.15)
ORA 3 Spanish Task			Italian Task		
WM	MM	HM	WM	MM	HM
94.84	88.31	78.32	95.89	89.81	73.52
+0.03 (0.03%)	+2.78 (3.15%)	+3.33 (4.25%)	-4.46 (-4.65%)	-3.39 (-3.77%)	-11.29 (-15.35)
	WM 94.84 + 0.03	$\begin{array}{c} CC (39) & 97.70 \\ AC (42) & -0.18 \\ (-0.18\%) \\ \hline \\ Spanish Tas \\ WM & MM \\ 94.84 & 88.31 \\ \hline +0.03 & +2.78 \\ \end{array}$	$\begin{array}{c c} CC (39) & 97.70 & 95.31 \\ \hline AC (42) & -0.18 & 0.38 \\ (-0.18\%) & (+0.40\%) \\ \hline \\ \hline \\ Spanish Task \\ WM & MM & HM \\ \hline \\ 94.84 & 88.31 & 78.32 \\ \hline \\ +0.03 & +2.78 & +3.33 \\ \hline \end{array}$	CC (39) 97.70 95.31 89.13 AC (42) -0.18 0.38 1.62 (-0.18%) $(+0.40\%)$ $(+1.82\%)$ Spanish Task It WM MM HM 94.84 88.31 78.32 95.89 + 0.03 + 2.78 + 3.33 -4.46	CC(39)97.7095.3189.1374.37 $AC(42)$ -0.18 0.381.623.09 $(-0.18%)$ $(+0.40%)$ $(+1.82%)$ $(+4.15)$ Spanish TaskItalian TaskWMMMHMWM94.8488.3178.32 95.8989.81 $+0.03$ $+2.78$ $+3.33$ -4.46 -3.39

[Dimitriadis et al 2007]

Improved instantaneous frequency estimation

Feature Estimation Methods

- Time-domain: average weighted instantaneous frequency (AIF)
- Frequency domain:
 - spectral moment (SM)
 - spectral derivative (SpD)
- Zero-crossings (ZC)

Feature Trajectories & Performance

Performance on TIMIT (+noise), Aurora 2,3 tasks:

 SM/SpD is the top performer, closely followed by AIF, ZC is significantly worse

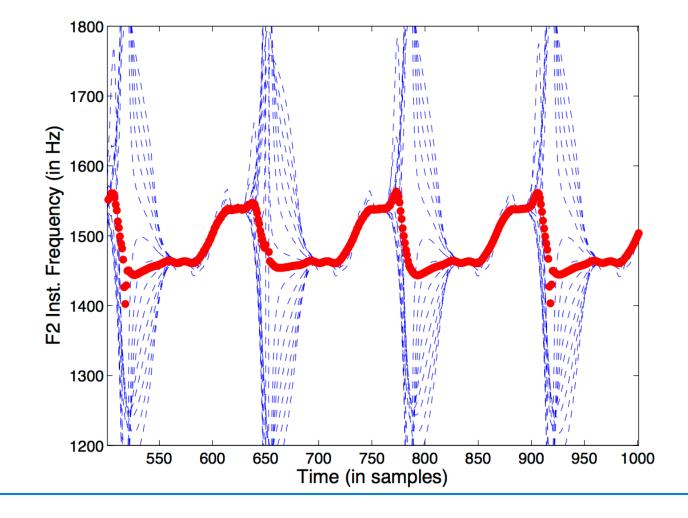
Relation with auditory front-ends

Zero-crossings

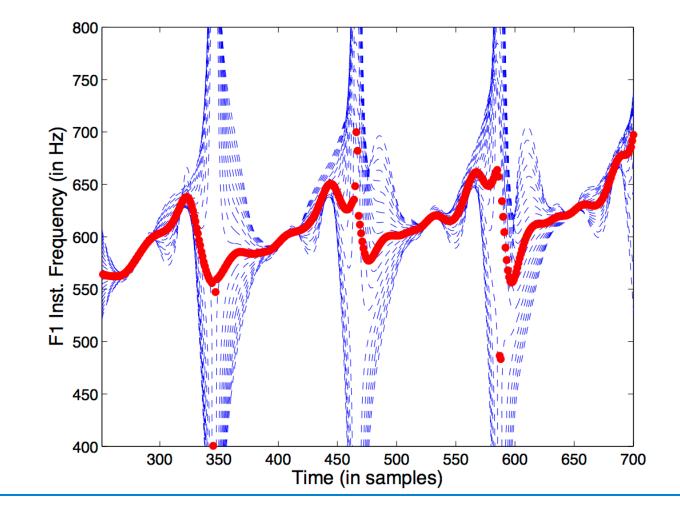
[Ghitza 1986, Kim et al 1999]

- Cochlear model, Auditory Spectrogram
 [Yang et al 1992, Wang & Shamma 1994, Ru 2001]
 - 1. Auditory filtering: $y_1(t,x) = s(t) *_t h(t;x)$ 2. Time-differentiation & averaging $y_2(t,x) = g(\partial_t y_1(t,x)) *_t w(t)$ 3. Frequency differentiation & averaging $y_3(t,x) = \partial_x y_2(t,x) *_x \nu(x)$

Filterbank Arrays


 Average (in frequency) inst. frequency and amplitude estimates over neighboring filters

$$F_A = rac{\sum_k \left(\int_{t_0}^{t_0+T} f(t,k) [a(t,k)]^2 dt
ight)}{\sum_k \left(\int_{t_0}^{t_0+T} [a(t,k)]^2 dt
ight)}$$


 Inverse variance weighting (variance estimated over neighboring filters)

$$F_{n,m} = \frac{\int_{t_0}^{t_0+T} f(t)[a(t)]^n [v_f(t)]^{-m} dt}{\int_{t_0}^{t_0+T} [a(t)]^n [v_f(t)]^{-m} dt}$$

IF estimation of synthetic resonance

IF estimation of real speech signal

Results

- Estimation error variance reduction using filterbank arrays
 - x 4-7 times for frequency and bandwidth estimates, e.g., AIF, using averaging of neighboring filters
 - x 1.5-2 times using inverse variance weighting

Speech recognition

- FMP feature set: second spectral moment over first spectral moment [Dimitriadis et al. 2005]
- When used as stand-alone feature using filterbank arrays improves performance significantly: 40% => 60% (AURORA 3 Spanish Task)

Summary

- The SMAC frequency-domain front-end
 - equivalent performance in clean recording conditions
 - more robust in noisy situations
- Parameterization
 - larger frequency overlap (wider filters)
 - the SM vector remains in the frequency domain
 - addition of few cepstral coefficients

Discussion

- Equivalence between frequency and energy so what is different?
 - more robust in a variety of noise types
 - VTLN, spectral masking, frequency warping, etc
- What else is to be investigated?
 - theoretic noise analysis
 - alternative fusion of frequency and energy
 - higher order moments
 - other speech applications