Distributional Semantic Models for Affective Text Analysis and Grammar Induction

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Acknowledgements

- Elias losif, Kelly Zervanou, Georgia Athanasopoulou: semantic similarity computation, semantic networks, semantic spaces
- Nikos Malandrakis, Shri Narayanan (USC): affective models for text, dialogue and multimedia
- Giannis Klassinas, Georgia Athanasopoulou, Elias losif, Spyros Georgiladakis, Elissavet Palogiannidi: grammar induction for spoken dialogue systems

References

[1] E. Iosif and A. Potamianos. 2010. "Unsupervised semantic similarity computation between terms using web documents". IEEE Transactions on Knowledge and Data Engineering.

[2] E. losif and A. Potamianos. 2013. "Similarity computation using semantic networks created from web-harvested data". Natural Language Engineering.

[3] N. Malandrakis, A. Potamianos, E. Iosif and S. Narayanan. 2013. "Distributional Semantic Models for Affective Text Analysis". IEEE Transactions on Audio, Speech and Language Processing.

[4] K. Zervanou, E. losif and A. Potamianos. 2014. "Word Semantic Similarity for Morphologically Rich Languages". In Proc. LREC.

[5] N. Malandrakis et al. 2014. "Affective language model adaptation via corpus selection". In Proc. ICASSP.

[6] G. Athanasopoulou, E. Iosif and A. Potamianos. 2014. "Low-Dimensional Manifold Distributional Semantic Models". In Proc. COLING.

[7] S. Georgiladakis et al. 2014. "Fusion of knowledge-based and data-driven approaches to grammar induction". In Proc. Interspeech.

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Talk Outline

- Motivation: Cognitive Semantic Models
- Semantic similarity estimation
 - Web data harvesting
 - Network-based Distributional Semantic Models (DSMs)
 - Hierarchical manifold DSMs
- Semantic-affective models of text
 - Affective lexica and semantic-affective maps
 - Compositional semantics and affect
 - Affective model adaptation
- PortDial and SpeDial project overview
 - Grammar induction
 - Web data harvesting
 - SemEval 2014 task on grammar induction

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

List of Open Questions

- How are concepts, features/properties, categories, actions represented?
- 2 How are concepts, properties, categories, actions combined (compositionally)?
- 3 How are judgements (classification/recognition decisions) achieved?
- 4 How is learning and inference (especially induction) achieved?

Answers should fit evidence by psychology and neurocognition!

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

くぼう くほう くほう

Three Solutions

Symbolic

- cognition is a Turing machine
- computation is symbol manipulation
- rule-based, deterministic (typically)
- Associationism, especially, connectionism (ANNs)
 - brain is a neural network
 - computation is activation/weight propagation
 - example-based, statistical, unstructured (typically)

Conceptual

- intermediate between symbolic and connectionist
- concepts are represented as well-behaved (sub-)spaces
- computation tools: similarity, operators, transformations
- hierarchical, semi-structured

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Properties of the Three Approaches

- Symbolic
 - Good for high-level cognitive computations (math)
 - Poor generalization power
 - Too expensive and slow for most cognitive purposes
- Conceptual
 - Excellent generalization power (intuition, physics)
 - Good for induction and learning; geometric properties (hierarchy, low dim., convex) guarantee quick convergence
 - Properties and actions defined as operators/translations
 - Still too slow for some survival-dependent decisions
- Connectionist (machine learning)
 - General-purpose, extremely fast and decently accurate
 - Computational sort-cuts create cognitive biases
 - Poor generalizability power due to high dimensionality and lack of crisp semantic representation

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Representation Learning

- Properties of a classifier with good generalization properties [Bengio et al 2013]:
 - Low-dimensionality/Sparseness
 - Distributed representations/hierarchy
 - Depth and abstraction
 - Shared factors across tasks
- Examples: auto-encoders, manifolds, deep neural nets ...
- How to induce these properties in your classifiers:
 - Include as regularization term in training classifier criterion
 - Include properties directly in classifier design
 - Go deep and pray (dirty neural net tricks)

School of ECE, National Technical Univ. of Athens, Greece

Distributional Semantic Models for Affective Text Analysis and Grammar Induction

Alexandros Potamianos

Our Vision

Cognitively-motivated semantic models

- Emphasis on induction not classification
- Associations not probabilities/distance
- Mappings between layers
- Hierarchical manifold models not metric spaces
- Multimodal not unimodal
- Other cognitive considerations ...

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Problem Definition

Semantic Similarity Computation

- Given a pair of words or terms (w_i, w_j)
- Compute semantic similarity between them S(i, j)
- Related tasks
 - Phrase or sentence level semantic similarity
 - Strength of associative relation between words
 - Affective score (valence) of words and sentences
- Motivation
 - Organizing principle of human cognition
 - Building block of machine learning in NLP/semantic web
 - Entry point for the semantics of language

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

System 1 vs System 2

Using Kahneman's (and others) formalism:

- System 1 (intuition): generates
 - impressions, feelings, and inclinations
- System 2 (reason): turns System 1 input into
 - beliefs, attitudes, and intentions
- Associative relations reside in System 1
- But where do semantic relations reside?

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Example

Example from vision: system 1 vs system 2

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Main approaches of lexical semantics

- Word are associated with feature vectors
 - crisp, parsimonious representation of semantics
- Distributional semantic models (DSMs)
 - Semantic information extracted from word frequencies
 - Estimate co-occurence counts of word pairs or triplets
 - Estimate statistics of word context vectors
- Semantic networks
 - discovery of new relations via systematic co-variation
 - robust estimates smoothing corpus statistics over network
 - rapid language acquisition

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Example of Semantic Network

- Linked nodes: lexicalized senses and attributes
 - Informative for semantic similarity computation
- Computation of structural properties, e.g., cliques

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Proposed semantic similarity two-tier system

- Unifies the three approaches
- Fuzzy vs explicit semantic relations
- Word senses vs words vs concepts
- A two tier system
 - An associative network backbone
 - Semantic relations defined as operations on network neighborhoods (cliques)
- Consistent with system 1 vs system 2 view
- Furthermore we believe that the
 - underlying network consists of word senses, and
 - is a low dimensional semi-metric space

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Semantic Similarity Estimation by Machines

Resource-based, e.g., WordNet

- Require expert knowledge
- Not available for all languages

Corpus-based

- Distributional semantic models (DSMs)
- Unstructured (unsupervised): no use of linguistic structure
- Structured: use of linguistic structure
- Pattern-based, e.g., Hearst patterns

Mixed

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Semantic Sim. Computation: Sense Similarity

Maximum sense similarity assumption [Resnik, '95]:

- Similarity of words equal to similarity of their closest senses
- If words are considered as sets of word senses, this is the "common sense" set distance
- Given words w₁, w₂ with senses s_{1i}, s_{2i}

 $S(w_1, w_2) = \max_{ij} S(s_{1i}, s_{2j})$

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Semantic Sim. Computation: Attributional Similarity

Attributional similarity assumption

- Attributes (features) reflect semantics
 - Item-Relation-Attribute, e.g., canary-color-yellow
- Main representation schemes
 - Hierarchical/Categorical
 - Mainly taxonomic relations, e.g., IsA, PartOf
 - Distributed (networks)
 - Open set of relations, e.g., Cause-Effect, etc
- Similarity between words
 - Function of attribute similarity
 - Defined wrt representation

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Types of Similarity Metrics

Co-occurrence-based

- Assumption: co-occurrence implies relatedness
- Co-occurrence counts: web hits, corpus-based
- Examples: Dice coef., point-wise mutual information, ...

Context-based

- Assumption: context similarity implies relatedness (distributional hypothesis of meaning)
- Contextual features extracted from corpus
- Examples: Kullback-Leibler divergence, cosine similarity, ...
- Network-based (proposed)
 - Build lexical net using co-occurrence and/or context sim.
 - Notion of semantic neighborhoods
 - Assumptions: neighborhoods capture word semantics

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Queries to Web Search Engines

- Number of hits
- Document URLs (download)
- Document snippets

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Corpus Creation using Web Queries

- Two types of web queries
 - AND, e.g., "money + bank"
 - "... leading bank in India offering online money transfer ..."
 - IND, e.g., "bank"
 - "... downstream parallel to the **banks** of the river ..."
- AND queries
 - Pros: Similarity computation highly correlated (0.88) with human ratings [losif & Potamianos, '10]
 - Cons: Quadratic query complexity wrt lexicon L
- IND queries
 - Pros: Linear query complexity wrt lexicon L
 - Cons: Sense ambiguity: moderate correlation (0.55)

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Semantic Similarity Estimation

Co-occurrence based metrics

- From web: hits of IND, AND queries
- From (web) corpus: co-occurence counts at the snippet or sentence level
- Metrics: Dice, Jacard, Mutual Information, Google
- Context-based metrics
 - Download a corpus of documents of snippets using IND queries
 - Construct lexical context vector for each word (window ±1)
 - Cosine similarity using binary or log-weighted counts

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Enter semantic networks

- Why do IND queries fail to achieve good performance?
 - 1 Word senses are often semantically diverse
 - co-occurrence acts as a semantic filter
 - 2 Word senses have poor coverage in IND queries
 - rare word senses of words not well-represented
- Solution: use semantic networks
 - Create a corpus for all words in lexicon (not just semantic similarity pair)
 - 2 Use semantic neighborhoods for semantic cohesion
 - improved robustness
 - 3 Inverse frequency word-sense discovery
 - discover rare senses via co-occurrence with infrequent words

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Corpus and Network Creation

Goals

- Linear web query complexity for corpus creation
- New similarity metrics with high performance
- Proposed method
 - IND queries to aggregate data for large L (\approx 9K)
 - Create network and semantic neighborhoods
 - Neighborhood-based similarity metrics
- Advantages
 - Network: parsimonious representation of corpus statistics
 - Smooth distributions
 - Rare words: well-represented
 - Enable discovery of less frequent senses

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Lexical Network - Semantic Neighborhoods

Lexical Network

- Undirected graph G = (N, E)
 - Vertices N: words in lexicon L
 - Edges E: word similarities

Semantic Neighborhoods

- For word *i* create subgraph *G_i*
- Select neighbors of i
 - Compute S(i,j), $\forall j \in L, i \neq j$
 - Sort j according to S(i, j)
 - Select | N_i | top-ranked j

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Semantic Neighborhoods: Examples

Word	Neighbors		
automobile	auto, truck, vehicle,		
	car, engine, bus,		
car	truck, vehicle , travel,		
	service, price, industry,		
slave	slavery, beggar, nationalism ,		
	society, democracy, aristocracy,		
journey	trip, holiday, culture,		
	travel, discovery, quest,		

Synonymy

- Taxonomic: IsA, Meronymy
- Associative
- Broader semantics/pragmatics
- Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Neighborhood-based Similarity Metrics: M_n

M_n metric: maximum similarity of neighborhoods

Motivated by maximum sense similarity assumption

- Neighbors are semantic features denoting senses
- Similarity of two closest senses

Select max. similarity: $M_n("forest", "fruit") = 0.30$

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Neighborhood-based Similarity Metrics: R_n

R_n metric: correlation of neighborhood similarities

Motivated by attributional similarity assumption

 Neighborhoods encode word attributes (or features)
 Similar words have co-varying sim. wrt their neighbors

Compute correlation *r* of neighborhood similarities

 r₁((0.16...0.09), (0.10...0.01)), r₂((0.002...0), (0.63...0.13))

Select max. correlation: R_n("forest", "fruit") = -0.04

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Neighborhood-based Similarity Metrics: metric $E_n^{\theta=2}$

 $E_n^{\theta=2}$ metric : sum of squared neighborhood similarities

Motivation: middle road between M_n and R_n Accumulation of word-to-neighbor similarities Non-linear weighting of similarities via $\theta = 2$ $E_n^{\theta=2}($ "forest", "fruit")= $\sqrt{(0.10^2 + \dots + 0.01^2) + (0.002^2 + \dots + 0^2)} = 0.22$

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Performance of net-based similarity metrics

- Task: similarity judgment on noun pairs
- Dataset: MC [Miller and Charles, 1998]
- Evaluation metric: Pearson's correlation wrt to human ratings

Dataset	Neighbor	Similarity	Metrics		
	selection	computation	<i>M</i> _{n=100}	<i>R</i> _{n=100}	$E_{n=100}^{\theta=2}$
MC	co-occur.	co-occur.	0.90	0.72	0.90
MC	co-occur.	context	0.91	0.28	0.46
MC	context	co-occur.	0.52	0.78	0.56
MC	context	context	0.51	0.77	0.29

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Main findings

Network construction

- Co-occurence metrics achieve high-recall for word senses
- Context-based metrics achieve high-recall for attributes
- Semantic similarity performance
 - Co-occurence a more robust feature that context
 - Max sense similarity assumption is valid and gives best performance
 - Attributional similarity assumption valid for certain cases/languages

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Performance of web-based similarity metrics

For MC dataset

Feature	Description	Correlation
context	AND queries	0.88
context	IND queries	0.55
context	IND queries: network	0.90

 Comparable to structured DSMs, WordNet-based approaches

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Extensions

- Sentence level semantic similarity (SemEval 2012, 2013)
- Abstract vs concrete semantic networks (IWSC 2013)
- Grammar induction in PortDial/SpeDial projects
- Morphologically rich languages (LREC 2014)
 - Network-based DSMs perform consistently well across languages
- Network DSMs and language acquisition (BabyAffect project)
 - Recognition vs generalization power (induction)
- Manifold DSMs
- Multimodal (text and image) conceptual spaces

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Acquisition of lexical semantics

Assume a recently acquired word w

- Num. of *w*'s examples needed for "learning" *w*'s similarities
- Related to acquisition of lexical semantics
- Compare
 - Simple co-occurrence-based similarity metric
 - Network-based similarity metric
- Experiment
 - 28 noun pairs (Miller-Charles dataset)
 - Remove one word from each pair from the network
 - Compute pair similarities
 - Evaluation: correlation coef. wrt human similarity ratings

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Acquisition of lexical semantics

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Manifold DSMs

- Cognitive semantic space is fragmented in domains
- Sparse encoding of relations in each domain (manifold)
- Low-dimensional subspaces with good geometric properties
 - vs non-metric global semantic space
- Semantic similarity operation is performed locally in each subspace
- Decision fusion to reach semantic similarity score

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Manifold DSMs

Re - computed dissimilarity matrix.

Alexandros Potamianos

School of ECE. National Technical Univ. of Athens. Greece

★ ∃ > < ∃ >

< < >> < <</>
Sparse similarity matrices

Correlation performance on the WS363 task

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Effect of dimensionality

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Contributions

Proposed a language agnostic, unsupervised and scalable algorithm for semantic similarity computation

- No linguistic knowledge required, works from text corpus or using a web query engine
- Shown to perform at least as well as resource-based semantic similarity computation algorithms, e.g., WordNet-based methods

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Compositional Semantic-Affective Models of Text

- <ロ> <母> <ヨ> <ヨ> ヨ つへぐ

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Motivation

- Affective text labeling at the core of many multimedia applications, e.g.,
 - Sentiment analysis
 - Spoken dialogue systems
 - Emotion tracking of multimedia content
- Affective lexicon is the main resource used to bootstrap affective text labeling
 - Lexica are currently of limited scope and quality

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Goals and Contributions

Our goal: assigning continuous high-quality polarity ratings to any lexical unit

- We present a method of expanding an affective lexicon, using web-based semantic similarity
- Assumption: semantic similarity implies affective similarity.
- The expanded lexica are accurate and broad in scope, e.g., they can contain proper nouns, multi-word terms

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Our lexicon expansion method

Extension of [Turney and Littman, '02]. Assumption: the valence of a word can be expressed as a linear combination of the valence ratings of seed words weighted by semantic similarity and trainable weights a_i :

$$\hat{v}(t) = a_0 + \sum_{i=1}^{N} a_i v(w_i) d(w_i, t),$$
 (1)

- t: a word or n-gram (token) not in the affective lexicon
- w₁...w_N : seed words
- v(.) : valence rating of a word or n-gram
- a_i: weight assigned to seed w_i
- **d**(w_i , t) : semantic similarity between word w_i and token t

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Semantic-Affective Mapping

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Given

- an initial lexicon of K words
- a set of *N* < *K* seed words

we can use (1) to create a system of *K* linear equations with N + 1 unknown variables:

$$\begin{bmatrix} 1 & d(w_1, w_1)v(w_1) & \cdots & d(w_1, w_N)v(w_N) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & d(w_K, w_1)v(w_1) & \cdots & d(w_K, w_N)v(w_N) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} 1 \\ v(w_1) \\ \vdots \\ v(w_K) \end{bmatrix}$$
(2)

Solving with Least Mean Squares estimation provides the weights a_i .

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Example, N = 10 seeds

Order	Wi	$V(W_i)$	ai	$v(w_i) imes a_i$
1	mutilate	-0.8	0.75	-0.60
2	intimate	0.65	3.74	2.43
3	poison	-0.76	5.15	-3.91
4	bankrupt	-0.75	5.94	-4.46
5	passion	0.76	4.77	3.63
6	misery	-0.77	8.05	-6.20
7	joyful	0.81	6.4	5.18
8	optimism	0.49	7.14	3.50
9	loneliness	-0.85	3.08	-2.62
10	orgasm	0.83	2.16	1.79
-	w ₀ (offset)	1	0.28	0.28

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Sentence Tagging

Simple combinations of word ratings:

linear (average)

$$v_1(s) = \frac{1}{N} \sum_{i=1}^N v(w_i)$$

weighted average

$$v_2(s) = rac{1}{\sum\limits_{i=1}^{N} |v(w_i)|} \sum\limits_{i=1}^{N} v(w_i)^2 \cdot \operatorname{sign}(v(w_i))$$

max

$$v_3(s) = \max_i (|v(w_i)|) \cdot \operatorname{sign}(v(w_z)), \quad z = \arg\max_i (|v(w_i)|)$$

Alexandros Potamianos

N-gram Affective Models

Generalize method to n-grams

 $v_i(s) = a_0 + a_1 v_i(unigram) + a_2 v_i(bigram)$

Starting from all 1-grams and 2-grams, select terms:

- Backoff: use overlapping bigrams as default, revert to unigrams based on mutual information-based criterion
- 2 Weighted interpolation: use all unigrams and bigrams as default, reject bigrams based on criterion
- In both cases unigrams and bigrams are given linear weights, trained using LMS

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Evaluation

- ANEW Word Polarity Detection Task
 - Affective norms for English words (ANEW) corpus
 - 1.034 English words, continuous valence ratings
- General Inquirer Word Polarity Detection
 - General Inquirer words corpus
 - 3.607 English words, binary valence ratings
- BAWLR Word Polarity Detection Task
 - Berlin affective word list reloaded (BAWLR) corpus
 - 2.902 German words, continuous valence ratings
- SemEval 2007 Sentence Polarity Detection
 - SemEval 2007 News Headlines corpus
 - 1.000 English sentences, continuous valence ratings
 - ANEW used for lexicon training
 - 250 sentence development set used for word fusion training
- SemEval 2013, 2014: Twitter Sentiment Analysis

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Experimental Procedure

Corpus selection

- Web corpus (web)
- Lexically balanced web corpus (14m, 116m)
- Semantic Distance
 - Co-occurrence based (G = google)
 - Context-based using web snippets (S)
- All experiments: training on ANEW seed words (cross-validation)

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Word Polarity Detection (ANEW)

2-class word classification accuracy (positive vs negative)

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Word Polarity Detection (GINQ)

2-class word classification accuracy (positive vs negative)

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Word Polarity Detection (BAWLR)

2-class word classification accuracy (positive vs negative)

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Sentence Polarity Detection (SemEval 2007)

2-class sentence classification accuracy (positive vs negative), using weighted interpolation

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Sentence Polarity Detection (SemEval 2007)

2-class sentence classification accuracy (positive vs negative), vs bigram rejection threshold

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Sentence Polarity Detection (SemEval 2007)

Using a compositional DSM model for AN pairs

2-class sentence classification accuracy

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

ChIMP Sentence Frustration/Politeness Detection

- ChIMP Children Utterances corpus
- 15.585 English sentences, Politeness/Frustration/Neutral ratings
- SoA results, binary accuracy P vs 0 / F vs O:
 - 81% / 62.7% [Yildirim et al, '05]
- 10-fold cross-validation
- ANEW used for training/seeds to create word ratings
- ChiMP words added to ANEW with weight w, to adapt to the task
- Similarity metric: Google semantic relatedness
- Only content words taken into account

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Politeness: Sentence	Fusion scheme			
Classification Accuracy	avg	w.avg	max	
Baseline: P vs O	0.70	0.69	0.54	
Adapt $w = 1$: P vs O	0.74	0.70	0.67	
Adapt $w = 2$: P vs O	0.77	0.74	0.71	
Adapt $w = \infty$: P vs O	0.84	0.82	0.75	
	1			
Frustration: Sentence	Fus	ion sche	eme	
Frustration: Sentence Classification Accuracy	Fus avg	ion sche w.avg	eme max	
Frustration: Sentence Classification Accuracy Baseline: F vs O	Fus avg 0.53	ion sche w.avg 0.62	eme max 0.66	
Frustration: SentenceClassification AccuracyBaseline: F vs OAdapt $w = 1$: F vs O	Fus avg 0.53 0.51	ion sche w.avg 0.62 0.58	eme max 0.66 0.57	
Frustration: SentenceClassification AccuracyBaseline: F vs OAdapt $w = 1$: F vs OAdapt $w = 2$: F vs O	Fus avg 0.53 0.51 0.49	ion sche w.avg 0.62 0.58 0.53	eme max 0.66 0.57 0.53	

Alexandros Potamianos

<ロ> <四> <四> <日> <日> <日> <日</p> School of ECE, National Technical Univ. of Athens, Greece

= 990

Twitter Sentiment Analysis: Main Concept

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Twitter Sentiment Analysis: Semantic Adaptation

3-class sentence classification accuracy (positive-neutral-negative) [ICASSP 2014]

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

SemEval 2014: Twitter Sentiment Results Analysis

Eastures removed	LJ2014		SMS2013		TW2013		TW2014		TW2014SC	
reatures removed	avg. F1	diff	avg. F1	diff						
None (Submitted)	69.3		57.0		66.8		67.8		57.3	
Lexicon-derived	43.6	-25.8	38.2	-18.8	49.5	-17.4	51.5	-16.3	43.5	-13.8
Emotiword	67.5	-1.9	56.4		63.5	-3.3	66.1	-1.7	54.8	-2.5
Base	68.4		56.3		65.0	-1.9	66.4	-1.4	59.6	2.3
Adapted	69.3		57.4		66.7		67.5		50.8	-6.5
Sentiment140	68.1	-1.3	54.5	-2.5	64.4	-2.4	64.2	-3.6	45.4	-11.9
NRC Tag	70.6	1.3	58.5	1.6	66.3		66.0	-1.7	55.3	-2.0
SentiWordNet	68.7		56.0		66.2		68.1	0	52.7	-4.6
per Lexeme	69.3		56.7		66.1		68.0		52.7	-4.5
per Lexeme-POS	68.8		57.1		66.7		67.4		55.0	-2.2
Semantic Similarity	69.0		58.2	1.2	64.9	-2.0	65.5	-2.2	52.2	-5.0
Punctuation	69.7		57.4		66.6		67.1		53.9	-3.4
Emoticon	69.3		57.0		66.8		67.8		57.3	
Contrast	69.2		57.5		66.7		67.0		51.9	-5.4
Prefix	69.5		57.2		66.8		67.2	1	47.4	-9.9
Suffix	68.6		57.2		66.5		67.9		56.3	

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

→ ∃ → < ∃</p>

Conclusions

Proposed a high-performing, robust, general-purpose and scalable algorithm for affective lexicon creation

- Investigated linear and non-linear sentence level fusion schemes, showing good but task-dependent performance
- Investigated domain adaptation: semantic space vs semantic-affective mapping adaptation
- Demonstrated that distributional approach can generalize to n-grams

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Linguistic Resources for Spoken Dialogue Systems: The PortDial and SpeDial projects

- 《口》《聞》《言》《言》《曰》 《口》

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Outline

PortDial project

- "Language Resources for Portable Multilingual Spoken Dialogue Systems"
- 2-year EU-funded project: currently in last quarter
- www.portdial.eu
- 2 SpedDial project
 - "Machine-Aided Methods for Spoken Dialogue System Enhancement and Customization for Call-Center Applications"
 - 2-year EU-funded project: currently in first quarter
 - www.spedial.eu
- 3 SemEval'14-Task 2
 - Grammar Induction for Spoken Dialogue Systems"
 - Evaluation period: until March 30
 - http://alt.qcri.org/semeval2014/task2/

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

PortDial: Outline

Grammars

- Essential unit of spoken dialogue systems
- Expertise needed, time-consuming
- Need for rapid porting
- PortDial paradigm
 - Machine-aided process
 - Human-in-the-loop
- ProtDial approaches
 - Corpora creation via web harvesting
 - Grammar induction
 - Bottom-up: corpus-based
 - Top-down: ontology-based
 - Fusion of bottom-up and top-down

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

PortDial: Web-harvested corpora

WWW search query, e.g., "depart from"&("flight"|"travel"|..)
Out-of-domain LM: perplexity → grammaticality/spelling
In-domain LM: perplexity → domain relevance

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

PortDial: Web-harvested corpora

Travel domain grammar

83 low-level rules

■ E.g., <City> = ("New York", "London", ...)

47 high-level rules

■ E.g., <ArrivalCity> = ("fly to <City>", "arrive at <City>", ...)

Use of various corpora for inducing low-level rules

Corpus	Precision	Recall	F-measure	
Q&A	0.52	0.40	0.45	
WoZ	0.41	0.33	0.37	
Human-Human	0.42	0.32	0.36	
Human-System	0.41	0.34	0.37	
Manually harvested	0.46	0.41	0.43	
Web-harvested	0.56	0.45	0.50	

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- Goal: induction of high-level rules
 - Based on the availability of low-level rules
- Minimal set of examples (seeds) are provided
 - Analogous to the manual process of grammar development
 - Examples are automatically augmented
- Two sub-problems
 - Extraction of fragments from corpus
 - Retain fragments with appropriate boundaries
 - E.g., "to depart from <City> on" VS "depart from <City>"
 - 2 Similarity between seeds and extracted fragments
 - Retain semantically similar fragments
 - E.g., "out of <City>" VS "to <City>"

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- **1** Extraction of fragments
 - Binary classification problem
 - Valid / non-valid fragments
 - Seeds considered as valid fragments
 - Types of features
 - Lexical, e.g., frequency in corpus, num. of tokens
 - Syntactic, e.g., fragment perplexity, PoS info.
 - Semantic, e.g., similarity wrt to seeds
- 2 Similarity computation
 - Non-compositional: fragments as entire chunks
 - Various well-known lexical metrics
 - E.g., longest common sub-string similarity
 - Compositional: function of constituents' semantics
 - Recent open research problem
 - Models proposed for sentences, but not for phrases

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- Evaluation
 - Travel domain
 - Input: n seeds for each rule

■ n < 5

- Output: m fragments suggested for each rule
 - m: user-defined
- Accuracy
 - Valid / non-valid fragments classification: 43%
 - Suggestion of semantically similar fragments: 30%
- However, in practice
 - Some non-valid fragments may be useful
 - Lengthier, e.g., "depart from <City> on"
 - Human-in-the-loop idea
 - Post corrections
 - Iterative process

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

PortDial: Bottom-up & Top-down Grammar Induction

- Goal: Fuse different approaches for grammar induction
 - High-level rules
- Approaches
 - 1 Bottom-up: corpus-based
 - 2 Top-down: based on ontology lexica
- Bottom-up (BU)
 - Relies on given seeds for each grammar rule
 - Extraction and suggestion of similar textual fragments
- Top-down (TD)
 - Ontology lexica: lexicalizations of ontological knowledge
 - Represent domain semantics in ontological representation
 - Possible lexicalizations are encoded as grammar rules

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece
PortDial: Bottom-up & Top-down Grammar Induction

- - Evaluation: Travel domain

Approach	Precision	Recall	F-measure
Bottom-Up (BU)	0.65	0.44	0.52
Top-Down (TD)	0.81	0.18	0.30
Early fusion	0.64	0.44	0.52
Mid fusion	0.56	0.54	0.55
Late fusion	0.72	0.55	0.63

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

SpeDial Objectives

- Devise machine-aided algorithms for spoken dialogue system enhancement and customization for call-center applications
- Create a platform that supports cost-effective service doctoring for
 - Service enhancement: the developer starts from an existing application and tries to improve performance and user satisfaction,
 - Service customization: the developer addresses the special needs of a user population
- Create and support a sustainable pool of developers that will be trained to use the platform

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

.

SpeDial: Multimodal Analytics for IVR

Affective analysis of dialogues

- Valence, arousal, mood, certain/uncertain
- Also: gender, age, nativeness identification
- Call-flow, discourse and cross-modal analytics
 - Identify problematic and successful parts of the dialogues
 - Identify dialogue hot-spots
- Multilingual analytics
 - How previous sub-tasks can be applied across multiple languages

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

SpeDial: Enhancement and Customization

- Prompt and grammar enhancement
 - Select most appropriate prompts from the pool of prompts
 - Use transcriptions to train/update statistical grammars
 - Update FSM grammars via grammar induction
- Dialogue flow enhancement
 - Adjustment of system policies for successful interactions
- User modeling: prompt selection wrt
 - Age, gender, age & gender
- Multilinguality
 - SMT & crowd-sourcing to improve on prompts & grammars
 - Corpus-based methods for statistical grammar training
 - Direct translation of service grammars

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

SemEval workshops

- Various shared evaluations tasks of computational semantic analysis systems
- SemEval'14: the 8th workshop
- Co-located with COLING'14, Dublin, Ireland, August 2014
- SemEval'14 Task 2
 - Grammar induction for spoken dialogue systems"
 - Fosters the application of models of lexical semantics to spoken dialogue systems
 - Organized by the consortium of PortDial project

School of ECE, National Technical Univ. of Athens, Greece

Distributional Semantic Models for Affective Text Analysis and Grammar Induction

Alexandros Potamianos

Grammar rules distinguished into

- 1 Low-level
 - Refer to basic concepts; comprised by lexical items only
 - E.g., <City> = ("New York", "London", ...)
- 2 High-level
 - Grouping of semantically related textual fragments
 - Composed of both lexical items and low-level rules
 - E.g., <ArrivalCity> = ("fly to <City>", "arrive at <City>", ...)
- Parsing example
 - "I want to fly to London"
 - 2 "I want to fly to <City>"
 - 3 "I want to < ArrivalCity>"

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Sub-problems

- 1 Induction of low-level rules
 - 1 Well-investigated
 - 2 Also, use of resources, e.g., gazetteers
- 2 Induction of high-level rules
 - 1 Segmentation problem: identify candidate fragments
 - 2 Similarity problem: compute similarity between fragments
- SemEval'14-Task 2
 - Focus on high-level rules
 - Low-level rules are given
 - Segmentation problem simplified as:
 - Discriminate between valid / non-valid fragments
 - Main focus: computation of similarity between fragments

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- Train data
 - List of fragments for each grammar rule
 - Instances of low-level rules: given
 - List of non-valid fragments
- Test data
 - List of unknown fragments
 - For each unknown fragment:
 - 1 Is it a valid fragment?
 - 2 If so, assign it to the most similar rule

Domain	Language
Travel	English
Travel	Greek
Tourism	English
Finance	English

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Thank you

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece