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Outline

Affective Modeling

— Affective Classification of Audio Clips
— Affective Tracking of Movies
Multimedia and Cognition

— Saliency and Attention

— Representation modeling
Semantic-Affective Models

— Symbolic, Associative, Conceptual

— Representation models in machine learning
— Our proposal: Audio, Music, Speech
Grand Challenges



Affective Classification of Generic Audio
Clips using Regression Models

N. Malandrakis, S. Sundaram, A. Potamianos
InterSpeech 2013



Semantics of Generic Audio |

Semantic labels and clips per label
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Semantics of Generic Audio |l

Onomatopoeia labels and clips per label
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Overall affective characterization
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Distribution of All Ratings

Valence-Arousal
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Distribution of Clip Average Ratings

. Valence-Arousal
0 0 Q 0 0 0 0 0 0
7
0 0 0 0 0 0 0 0 0
L
3 22 8 0 0 0 0 0 0
50y 27 26 10 2 0 0 0
3
24 o 3 70 256 100 18 0 0 0
b
4 0 0 8 o2 70 0 0 0
0 0 0 16 78 73 28 0 0
2l
0 0 0 0 0 10 a2 1 0
1
0 0 0 0 0 0 2 0 0
0
0 1 2 3 4 5 8 7 e

valance



arousal
o N A OO @

3D Affective space correlations

dominance
o N A OO O

dominance
o N A OO @

O 2 4 6 8 0O 2 4 6 8 O 2 4 6 8
valence arousal valence



Inter-annotator agreement

Inter-annotator agreement

Metric Arous. | Valen.| Domn.
avg. pairwise correlation 0.52 0.55 0.16
avg. pairwise mean abs. dist. 2.02 1.84 2.32
Krippendorff’s alpha (ordinal) 0.39 0.47 0.11
Krippendorff’s alpha (interval) | 0.39 0.46 0.10
Agreement with the ground truth
Metric Arous. | Valen.| Domn.
avg. correlation 0.55 0.60 0.41
avg. mean abs. dist. 1.42 1.18 1.36




Frame level vs Long-Term Features

Scope | Low Level. Descr. Arous. | Valen. | Domn.
frame | chroma + A 0.41 0.45 043
level | log Mel power + A | 0.44 0.48 0.44
MFECC + A 0.45 0.44 0.43
long chroma + A 0.41 0.46 0.42
term log Mel power + A | 0.46 0.49 0.46
MFECC + A 0.48 0.48 0.45




Feature Selection

Model # of features | Arous. | Valen. | Domn.
Users - 0.55 0.60 0.41
10 0.70 0.67 0.63
MLR 20 0.72 0.70 0.65
Regression 30 0.74 0.71 0.67
Model 40 0.75 0.72 0.68
50 0.75 0.73 0.69




3-class accuracy

3-class Classification Accuracy
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A Supervised Approach to
Movie Emotion Tracking

N. Malandrakis, A. Potamianos, G.

Evangelopoulos, A. Zlatintsi
ICASSP 2011



Example Frames




Arousal vs Valence Labeled Data

negative<— valence —positive

passive<—  arousal = —>active




Features and Models

* Continuous-time modeling using HMM models

* Language model used for smoothing

e Features used:

audio | 12 MFCCs and CO0, plus derivatives
Valence video maximum color value

video maximum color intensity
Arousal audio | 12 MFCCs and CO0, plus derivatives




Results: Frame Confusion Matrix
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Continuous-Time Emotion Tracking
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Affective tracks:
Arousal & Valence

Green— Machine

Blue — Human
Annotators (average)




System 1 vs System 2

m Using Kahneman’s (and others) formalism:
m System 1 (intuition): generates
— impressions, feelings, and inclinations
m System 2 (reason): turns System 1 input into
— beliefs, attitudes, and intentions

m Associative relations reside in System 1
m But where do semantic relations reside?



m Example from vision: system 1 vs system 2
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Discussion

Affective analysis of generic audio using
frame-level features and their statistics

Affect of movies fusing multimodal cues

Hard to draw general conclusions about
feature selection

No universal features (except MFCCs!?)

A detection-based approach for audio
processing?






Cognition and Attention

 What grabs our attention?
— Salient events

e Attention and Perception:
— A simple perceptual algorithm
— Quickly identify relevant (to survival) information

— Bottom-up selectional attention: features extracted via low
level signal processing

— Fusion of top-down and bottom-up attention

* The attention/saliency relationship is used in
multimedia production



What
Grabs
Your
Attention
In an
Image?

Closure Length, Width

from http://www.feng-gui.com



Attention and Saliency

Audio: rhythm, energy, change of frequency content
Images over time (video): motion (direction,
velocity), flicker

Such low level features capture about 60-80% of
“events” in each modality

How do we capture the rest?

— Multimodality (up to 90%)
— Semantics (top-down selectional attention)



Attention Models: Good Example

example from http://www.feng-gui.com



Attention Models: Bad Example

CUMRAX-COM



Attention Models and Saliency

* Attention model of video streams

* Saliency measures:

- Aural: energy of multi-frequency band features
Visual: multi-scale intensity, color and motion

Text: part of speech assignments

* Tusion on a single audio-visual-text saliency metric



Frame

Audio Saliency Features
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Visual Saliency

ELL
BARAES




AVT Salience via Linear Fusion
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Saliency: audio (solid), visual (dashed) and text (dotted)
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Example: x2 compression




AV Key Frames: 300




Movie Summarization Algorithm

Filter: AVSC with median of length 2M + 1.
Threshold choice

Selection: segments

Reject: segments shorter than N frames

Join: segments less than K frames apart

Render: Linear overlap-add on L video frames and

audio

oA WN -

Evaluation: M = N =20, K = L = 10 (videos at 25 fps).



Movie Summarization Algorithm (2)
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Summary
annotated with AVT
Saliency

Grey — Rejected

Color- Accepted in
summary

: 2X rate : frame rejected




Discussion

* Low-level selectional attention can be modeled using

o Low level feature detectors
o Fusion of detectors across modalities
o Can capture up to 95% of semantics

* Relevance for audio processing

o Audio source separation
o Event detection



Semantic Representations



List of Open Questions

El How are concepts, features/properties, categories, actions
represented?

F1 How are concepts, properties, categories, actions
combined (compositionally)?

El How are judgements (classification/recognition decisions)
achieved?

I3 How is learning and inference (especially induction)
achieved?

.
Answers should fit evidence by psychology and neurocognition!



Three Solutions

m Symbolic
m cognition is a Turing machine
m computation is symbol manipulation
m rule-based, deterministic (typically)

m Associationism, especially, connectionism (ANNS)
m brain is a neural network

m computation is activation/weight propagation
m example-based, statistical, unstructured (typically)

m Conceptual

m intermediate between symbolic and connectionist

m concepts are represented as well-behaved (sub-)spaces
m computation tools: similarity, operators, transformations
m hierarchical, semi-structured



Properties of the Three Approaches

Property Symbolic Conceptual Connectionist
cognitive speed very slow slow fast
machine speed very fast  pretty fast fast
cognitive accuracy good good decent
machine accuracy decent good good
dimensionality high low high
representation flat hierarchical  distributed
interpretability excellent good low
determinism high medium low
reasoning (all data) good good decent
compositionality good good decent
induction/learning poor excellent average




Properties of the Three Approaches

m Symbolic
m Good for high-level cognitive computations (math)
m Poor generalization power
m Too expensive and slow for most cognitive purposes
m Conceptual
m Excellent generalization power (intuition, physics)
m Good for induction and learning; geometric properties
(hierarchy, low dim., convex) guarantee quick convergence
m Properties and actions defined as operators/translations
m Still too slow for some survival-dependent decisions
m Connectionist (machine learning)
m General-purpose, extremely fast and decently accurate
m Computational sort-cuts create cognitive biases
m Poor generalizability power due to high dimensionality and
lack of crisp semantic representation



Main approaches of lexical semantics

m Word are associated with feature vectors
m crisp, parsimonious representation of semantics

m Distributional semantic models (DSMs)

m Semantic information extracted from word frequencies
m Estimate co-occurence counts of word pairs or triplets
m Estimate statistics of word context vectors

m Semantic networks

m discovery of new relations via systematic co-variation
m robust estimates — smoothing corpus statistics over network
m rapid language acquisition



Representation Learning

Properties of a classifier with good generalization
properties [Bengio et al 2013]:

— Low-dimensionality/Sparseness

— Distributed representations/hierarchy
* Depth and abstraction

— Shared factors across tasks

Examples: auto-encoders, manifolds, deep neural nets ...

How to induce these properties in your classifiers:

— Include as regularization term in training classifier criterion
— Include properties directly in classifier design

— Go deep and pray (dirty neural net tricks)



Proposed semantic similarity two-tier system

m Unifies the three approaches
m Fuzzy vs explicit semantic relations

m Word senses vs words vs concepts

m A two tier system

m An associative network backbone
m Semantic relations defined as operations on network
neighborhoods (cliques)

m Consistent with system 1 vs system 2 view

m Furthermore we believe that the

m underlying network consists of word senses, and
m is a low dimensional semi-metric space



Neighborhood-based Similarity Metrics: M,
M, metric: maximum similarity of neighborhoods

forest

m Motivated by maximum sense similarity assumption

m Neighbors are semantic features denoting senses
m Similarity of two closest senses

m Select max. similarity: M,(“forest”, “fruit”) = 0.30



Computations are mappings between layers
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Our lexicon expansion method

Expansion of [Turney and Littman, '02].

Assumption: the valence of a word can be expressed as a
linear combination of its semantic similarities to a set of seed
words and their valence ratings:

N
V(W) = a0+ ) a v(w) d(w;, w)), (1)

i=1

m w; : the wanted word

m Wi...wy : seed words

m v(w;) : valence rating of word w;

m g; . weight assigned to seed w;

m d(w;, w;) : measure of semantic similarity between words
w; and Wi



Grand Challenges



Detection-based Audio Processing



Saliency-driven Multimedia Processing



Representation Models for Multimedia

e Similarity is the main building block

— 3 types: similarity w. internal semantic representation, self-similarity over
time, similarity in context (biases by world/internal view)

— Associative network is layer 1 — all computations use this basic representation
e Detectors live in low-dimensional spaces with good geometric
properties (“metric”)
 Features are labels, labels are features

* Features/labels are organized hierarchically (multiple layers
from specific to general, i.e., abstraction)



Descriptions of Sounds
[slide by Shiva Sundaram]

TEXT

(narrow)

Onomatopoeia

ENclional Soeatures:

Acoustickeatures

AUDIO CLIPS




Descriptions of Sounds
[original slide by Shiva Sundaram]
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Our Timeline

Unexpectedly good results on semantic similarity tasks using web data

[E. losif, and A. Potamianos, "Unsupervised Semantic Similarity Computation Between Terms Using Web
Documents," IEEE Transactions on Knowledge and Data Engineering, Nov. 2010]

— Lucky enough to: 1) work on a semantic similarity task,
2) directly modeling human cognition

Goal: reduce web query complexity from quadratic to linear

[E. losif, and A. Potamianos, "Similarity Computation Using Semantic Networks Created From Web-Harvested
Data", Natural Language Engineering, 2013]

— Lucky enough not to stop at good initial performance

Realization:
— generalization power is in the semantic representation/network
— multi-tier models: associative network is the 15t tier

Cognitive science literature [P. Gardenfors, Conceptual Spaces, 2000]
— Low-dimensional “metric” sub-spaces (good geometric properties)
— Maps and operators defined in this space

Combine experience from machine learning to come up with a general
model



