

Cognitive Multimodal Processing: from Signal to Behavior

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- ・ロト・日本・モート・ヨー うくの

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Acknowledgements

- Elias losif, Georgia Athanasopoulou: semantic representations, manifold semantic models
- Nikos Malandrakis: semantic-affective models, movie emotion tracking
- Petros Maragos, George Evangelopoulos, Nancy Zlatintsi: saliency-based video summarization

References

[1] E. losif and A. Potamianos. 2010. "Unsupervised semantic similarity computation between terms using web documents". IEEE Transactions on Knowledge and Data Engineering.

[2] E. losif and A. Potamianos. 2013. "Similarity computation using semantic networks created from web-harvested data". Natural Language Engineering.

[3] N. Malandrakis, A. Potamianos, E. Iosif and S. Narayanan. 2013. "Distributional Semantic Models for Affective Text Analysis". IEEE Transactions on Audio, Speech and Language Processing.

[4] G. Athanasopoulou, E. Iosif and A. Potamianos. 2014. "Low-Dimensional Manifold Distributional Semantic Models". In Proc. COLING.

[5] N. Malandrakis, A. Potamianos, G. Evangelopoulos and A. Zlatintsi, 2011. "A supervised approach to movie emotion tracking, "in Proc. ICASSP

[6] G. Evangelopoulos, A. Zlatintsi, A. Potamianos, P. Maragos, K. Rapantzikos, G. Skoumas, and Y. Avrithis. 2013. "Multimodal saliency and fusion for movie summarization based on aural, visual, and textual attention," IEEE Transactions on Multimedia.

Alexandros Potamianos

<</td> </td

- Motivation: cognitive semantic models
- Maxims of interaction
 - Attention and saliency
 - Common ground and concept representations
- From semantics to behavior
 - an example: semantic-affective models
- Dual system processing
- Multimodal fusion
- Grand challenges

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Multimodal Signal and Interaction Processing

- From signal to semantics
- From signal to attitudes, behaviors and interaction
 - Affective computing, emotion recognition, sentiment analysis
 - Social signal processing (SSP): personality, status, dominance, persuasion, rapport etc.
 - Behavioral signal processing (BSP): socio-emotional state, cognitive state monitoring
- Challenges:
 - Define, label and annotate the high-level behaviors associated with interaction (manual)
 - 2 Devise computational algorithms to analyze, classify or recognize behaviors (automatic)

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

→ Ξ →

- 1 How are concepts, features/properties, categories, actions represented?
- 2 How are concepts, properties, categories, actions combined (compositionally)?
- 3 How are judgements (classification/recognition decisions) achieved?
- 4 How is learning and inference (especially induction) achieved?

Answers should fit evidence by psychology and neurocognition!

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- 4 同 2 4 日 2 4 日

Symbolic

- cognition is a Turing machine
- computation is symbol manipulation
- rule-based, deterministic (typically)
- Associationism, especially, connectionism (ANNs)
 - brain is a neural network
 - computation is activation/weight propagation
 - example-based, statistical, unstructured (typically)

Conceptual

- intermediate between symbolic and connectionist
- concepts are represented as well-behaved (sub-)spaces
- computation tools: similarity, operators, transformations
- hierarchical, semi-structured

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Properties of the Three Approaches

- Symbolic
 - Good for high-level cognitive computations (math)
 - Poor generalization power
 - Too expensive and slow for most cognitive purposes
- Conceptual
 - Excellent generalization power (intuition, physics)
 - Good for induction and learning; geometric properties (hierarchy, low dim., convex) guarantee quick convergence
 - Properties and actions defined as operators/translations
 - Still too slow for some survival-dependent decisions
- Connectionist (machine learning)
 - General-purpose, extremely fast and decently accurate
 - Computational sort-cuts create cognitive biases
 - Poor generalizability power due to high dimensionality and lack of crisp semantic representation

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- Properties of a classifier with good generalization properties [Bengio et al 2013]:
 - Low-dimensionality/Sparseness
 - Distributed representations/hierarchy
 - Depth and abstraction
 - Shared factors across tasks
- Examples: auto-encoders, manifolds, deep neural nets ...
- How to induce these properties in your classifiers:
 - Include as regularization term in training classifier criterion
 - Include properties directly in classifier design
 - Go deep and pray (dirty neural net tricks)

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

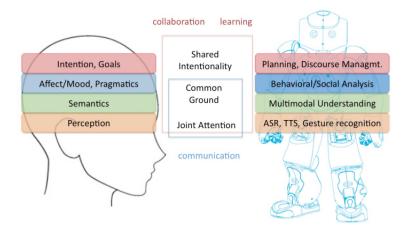
- Cognitively-motivated semantic and behavioral models
 - Emphasis on induction not classification
 - Associations not probabilities/distance
 - Hierarchical manifold models not metric spaces
 - Multimodal not unimodal
 - Mappings between modalities/layers (hub architecture)
 - Other cognitive considerations, e.g., parallelism ...

School of ECE, National Technical Univ. of Athens, Greece

→ Ξ →

Alexandros Potamianos

Maxims of Interaction



School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

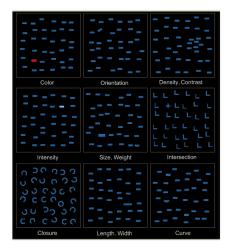
Cognition and Attention

- What grabs our attention?
 - Salient events
- Attention and Perception:
 - A simple perceptual algorithm
 - Quickly identify relevant (to survival) information
 - Bottom-up selectional attention: features extracted via low level signal processing
 - Fusion of top-down and bottom-up attention
- The attention/saliency relationship is used in multimedia production

System 1-2

Fusion Challenges

Low-level visual features (from feng-gui.com)



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Bottom-up saliency estimation

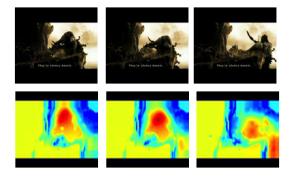
- Audio: rhythm, energy, change of frequency content, ...
- Images: color, orientation, density, intensity, size, weight ...
- Video: motion (direction, velocity), flicker
- Such low level features capture about 60-80% of "events" in each modality
- How do we capture the rest?
 - Multimodality (up to 90%)
 - Semantics (top-down selectional attention)
- High-performing computational algorithms for saliency estimation

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Video summarization using audio-visual-text saliency

from [G. Evangelopoulos et al. 2013]

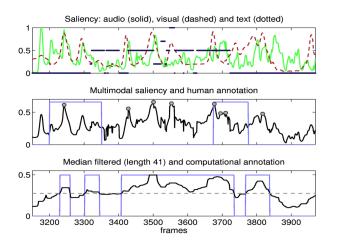


- * ロ > * 個 > * 目 > * 目 > - 目 * つへの

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Video summarization using audio-visual-text saliency



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- 1 Extracting mid- and high-level features including incorporating semantics (scenes, objects, actions)
- 2 Fusion of features over time and over modalities
- Computational models for the fusion of the bottom-up (gestalt-based) and top-down (semantic-based) attentional mechanisms
- Applying these multimodal salient models to realistic human-human (especially) and human-computer interaction scenarios
- Identifying the dynamics of attention and constructing joint (interactional) attention models

School of ECE, National Technical Univ. of Athens, Greece

→ Ξ →

Alexandros Potamianos

Constructing concept representations

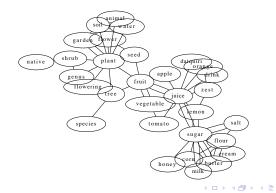
- Word are associated with feature vectors
 - crisp, parsimonious representation of semantics
- Distributional semantic models (DSMs)
 - Semantic information extracted from word frequencies
 - Estimate co-occurence counts of word pairs or triplets
 - Estimate statistics of word context vectors
- Semantic networks
 - discovery of new relations via systematic co-variation
 - robust estimates smoothing corpus statistics over network
 - rapid language acquisition

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Example of Lexical Semantic Network

- Linked nodes: lexicalized senses and attributes
 Informative for semantic similarity computation
- Computation of structural properties, e.g., cliques



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Cognitive Considerations

Table 3.1

Some major differences between brains and digital computers

Brains	Computers	
100,000,000,000 processing units	1-100 processing units	
1,000,000,000 operations/s		
Embodied	Abstract, disembodied	
Fault tolerant	Frequently crashes	
raded, probabilistic signals Binary, deterministic signals		
Evolves and is self-organizing	Is explicitly designed	
Learns	Is programmed	

from [Feldman's book "From molecule to metaphor"]

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece



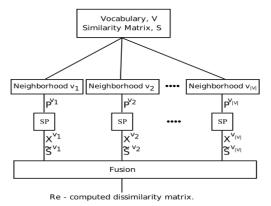
- Cognitive semantic space is fragmented in domains
- Sparse encoding of relations in each domain (manifold)
- Low-dimensional subspaces with good geometric properties
 - vs non-metric global semantic space
- Semantic similarity operation is performed locally in each subspace
- Decision fusion to reach semantic similarity score

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos



from [Athanasopoulou and Potamianos, COLING 2014]



Alexandros Potamianos

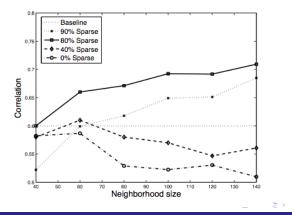
School of ECE, National Technical Univ. of Athens, Greece

I ≡ → ...

-

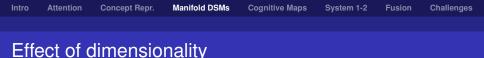
< < >> < <</>

 Correlation w. human ratings on the WS363 word semantic similarity task



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece



Very-low dimension in subspaces gives good or best performance!

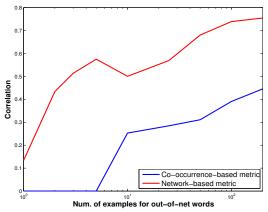


School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

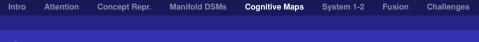
Lexical Acquisition using a semantic model

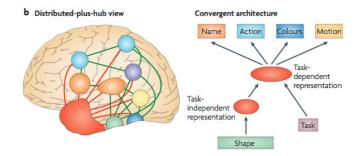
Learning the semantics of an unseen words from three web snippets!



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece





from [Patterson, Nestor and Rogers, 2007]

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

3 🔺 🗧 🗄

From Semantics to Behavior

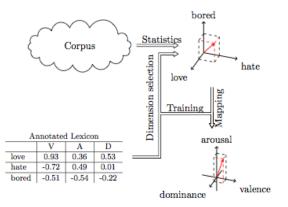
Main idea: map from one representation space (semantics) to another, e.g., affect

- We present a method of expanding an affective lexicon, using web-based semantic similarity
- Assumption: semantic similarity implies affective similarity.
- Create a map from a semantic to an affective representation

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Semantic-Affective Mapping



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Semantic-Affective Models

from [Malandakis et al 2013], extension of [Turney and Littman, 2002]

Assumption: the valence of a word can be expressed as a linear combination of the valence ratings of seed words weighted by semantic similarity and trainable weights a_i :

$$\hat{v}(t) = a_0 + \sum_{i=1}^{N} a_i v(w_i) d(w_i, t),$$
 (1)

- t : a word or n-gram (token) not in the affective lexicon
- w₁...w_N : seed words
- v(.) : valence rating of a word or n-gram
- **a**_i : weight assigned to seed w_i
- **d**(w_i , t) : semantic similarity between word w_i and token t

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Given

- an initial lexicon of K words
- a set of *N* < *K* seed words

we can use (1) to create a system of *K* linear equations with N + 1 unknown variables:

$$\begin{bmatrix} 1 & d(w_1, w_1)v(w_1) & \cdots & d(w_1, w_N)v(w_N) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & d(w_K, w_1)v(w_1) & \cdots & d(w_K, w_N)v(w_N) \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} 1 \\ v(w_1) \\ \vdots \\ v(w_K) \end{bmatrix}$$
(2)

Solving with Least Mean Squares estimation provides the weights a_i .

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

s Syste

System 1-2 Fusion

Challenges

Example, N = 10 seeds

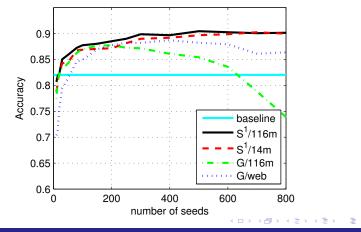
Order	Wi	$V(W_i)$	ai	$v(w_i) imes a_i$
1	mutilate	-0.8	0.75	-0.60
2	intimate	0.65	3.74	2.43
3	poison	-0.76	5.15	-3.91
4	bankrupt	-0.75	5.94	-4.46
5	passion	0.76	4.77	3.63
6	misery	-0.77	8.05	-6.20
7	joyful	0.81	6.4	5.18
8	optimism	0.49	7.14	3.50
9	loneliness	-0.85	3.08	-2.62
10	orgasm	0.83	2.16	1.79
-	w ₀ (offset)	1	0.28	0.28

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Word Polarity Detection (ANEW)

2-class word classification accuracy (positive vs negative)

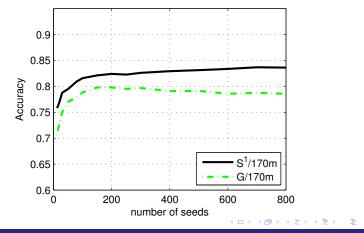


Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Word Polarity Detection (BAWLR)

2-class word classification accuracy (positive vs negative)



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Dual-System Processing: System 1 vs System 2

Using Kahneman's (and others) formalism:

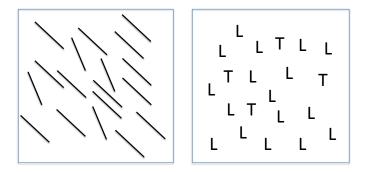
- System 1 (intuition): generates
 - impressions, feelings, and inclinations
- System 2 (reason): turns System 1 input into
 - beliefs, attitudes, and intentions
- Associative relations reside in System 1
- But where do semantic relations reside?

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos



Example from vision: system 1 vs system 2



Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Proposed semantic similarity two-tier system

- Unifies the three approaches
- Fuzzy vs explicit semantic relations
- Word senses vs words vs concepts
- A two tier system
 - An associative network backbone
 - Semantic relations defined as operations on network neighborhoods (cliques)
- Consistent with system 1 vs system 2 view
- Furthermore we believe that the
 - underlying network consists of word senses, and
 - is a low dimensional semi-metric space

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

System 1-2

Fusion Challenges

Lexical Network - Semantic Neighborhoods

Lexical Network

- Undirected graph G = (N, E)
 - Vertices N: words in lexicon L
 - Edges E: word similarities

Semantic Neighborhoods

- For word *i* create subgraph *G_i*
- Select neighbors of i
 - Compute S(i,j), $\forall j \in L, i \neq j$
 - Sort j according to S(i, j)
 - Select | N_i | top-ranked j

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

System 1-2

Fusion Challenges

Semantic Neighborhoods: Examples

Word	Neighbors	
automobile	auto, truck, vehicle,	
	car, engine, bus,	
car	truck, vehicle , travel,	
	service, price, industry,	
slave	slavery, beggar, nationalism,	
	society, democracy, aristocracy,	
journey	trip, holiday, culture,	
	travel, discovery, quest,	

- Synonymy
- Taxonomic: IsA, Meronymy
- Associative
- Broader semantics/pragmatics
- Alexandros Potamianos

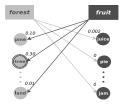
School of ECE, National Technical Univ. of Athens, Greece

Fusion

Neighborhood-based Similarity Metrics: M_n

[from E. losif and A. Potamianos, 2013]

M_n metric: maximum similarity of neighborhoods



Motivated by maximum sense similarity assumption

- Neighbors are semantic features denoting senses
- Similarity of two closest senses
- Select max. similarity: $M_n("forest", "fruit") = 0.30$

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Performance of web-based similarity metrics

- Task: similarity judgment (Miller-Charles dataset)
- Evaluation metric: correlation wrt to human ratings

Feature	Description	Correlation
context	AND queries	0.88
context	IND queries	0.55
context	IND queries: network	0.90

 Comparable to structured DSMs, WordNet-based approaches

School of ECE, National Technical Univ. of Athens, Greece

Alexandros Potamianos

Types of fusion:

- 1 Multimodal fusion, i.e., fusion between modality-specific processing outputs and multimodal outputs
- 2 Fusion over time, i.e., how stimuli are integrated both within and across modalities
- 3 Fusion of top-down (data-driven) and bottom-up (semantic) processing, or in general fusion between different layers of cognitive and computational processing

Challenge: go beyond simple algorithms that employ (weighted) averages of outputs (across time, modalities and processes) and design algorithms that make often highly non-linear fusion decisions depending on our cognitive state, behaviors and intentions

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

- 1 Annotation of the mid- and high-level behaviors associated with human-human and human-machine interaction
- 2 Attention and saliency modeling using mid- and high-level features (including semantics), as well as fusion model of top-down and bottom-up attentional mechanisms
- **3** From signal to semantics: use "big data" to construct distributed, low-dimensional semantic cognitive representations
- 4 From semantics to SSP/BSP labels: estimate mapping between semantics and other cognitive representation layers
- 5 Design models that are stateful and are able to predict cognitive biases, nonlinear logic, abrupt state transitions and surprise
- 6 Design multi-modal fusion algorithms that exhibit nonlinear behavior and depend on cognitive states, behaviors etc

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece

Thank you

Alexandros Potamianos

School of ECE, National Technical Univ. of Athens, Greece