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Talk Outline

Motivation: cognitive semantic models
Maxims of interaction

Attention and saliency
Common ground and concept representations

From semantics to behavior
an example: semantic-affective models

Dual system processing
Multimodal fusion
Grand challenges
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Multimodal Signal and Interaction Processing

From signal to semantics
From signal to attitudes, behaviors and interaction

Affective computing, emotion recognition, sentiment
analysis
Social signal processing (SSP): personality, status,
dominance, persuasion, rapport etc.
Behavioral signal processing (BSP): socio-emotional state,
cognitive state monitoring

Challenges:
1 Define, label and annotate the high-level behaviors

associated with interaction (manual)
2 Devise computational algorithms to analyze, classify or

recognize behaviors (automatic)
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List of Open Questions

1 How are concepts, features/properties, categories, actions
represented?

2 How are concepts, properties, categories, actions
combined (compositionally)?

3 How are judgements (classification/recognition decisions)
achieved?

4 How is learning and inference (especially induction)
achieved?

Answers should fit evidence by psychology and neurocognition!
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Three Solutions

Symbolic
cognition is a Turing machine
computation is symbol manipulation
rule-based, deterministic (typically)

Associationism, especially, connectionism (ANNs)
brain is a neural network
computation is activation/weight propagation
example-based, statistical, unstructured (typically)

Conceptual
intermediate between symbolic and connectionist
concepts are represented as well-behaved (sub-)spaces
computation tools: similarity, operators, transformations
hierarchical, semi-structured
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Properties of the Three Approaches

Symbolic
Good for high-level cognitive computations (math)
Poor generalization power
Too expensive and slow for most cognitive purposes

Conceptual
Excellent generalization power (intuition, physics)
Good for induction and learning; geometric properties
(hierarchy, low dim., convex) guarantee quick convergence
Properties and actions defined as operators/translations
Still too slow for some survival-dependent decisions

Connectionist (machine learning)
General-purpose, extremely fast and decently accurate
Computational sort-cuts create cognitive biases
Poor generalizability power due to high dimensionality and
lack of crisp semantic representation
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Representation Learning

Properties of a classifier with good generalization
properties [Bengio et al 2013]:

Low-dimensionality/Sparseness
Distributed representations/hierarchy

Depth and abstraction

Shared factors across tasks

Examples: auto-encoders, manifolds, deep neural nets ...
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Classification
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Latent Spaces and Causality
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Latent Spaces and Dependencies
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Example: Information Retrieval
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Linear Maps and Matrix Decomposition
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Low Dimensionality
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Sparsity
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Other Common Modeling Mistakes (1)

Are normed vector spaces (Banach) or Euclidean spaces
(Hilbert) good?

YES Fast convergence properties to unique fixed points
NO Orthogonality and curse of dimensionality
NO Tremendous waste of resources

Solution 1: Dimensionality reduction
Solution 2: Manifolds: union of low-dimensional sub-spaces
that have good geometric properties
Solution 3: Use deep neural networks
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Other Common Modeling Mistakes (2)

Are all features, classes, latent representation elements
born equal?

YES They are all points in my vector space model
NO There is hierarchy and abstraction

Solution 1: Use hierarchical models, e.g., hierarchical
manifolds, decision trees
Solution 2: Use sets (activation areas) instead of points , e.g.,
sparse distributed memory
Solution 3: Use deep neural networks
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Representation Learning

Properties of a classifier with good generalization
properties [Bengio et al 2013]:

Low-dimensionality/Sparseness
Distributed representations/hierarchy

Depth and abstraction

Shared factors across tasks

Examples: auto-encoders, manifolds, deep neural nets ...
How to induce these properties in your classifiers:

Include as regularization term in training classifier criterion
Include properties directly in classifier design
Go deep and pray (dirty neural net tricks)
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My Vision

Cognitively-motivated semantic and behavioral models
Emphasis on induction not classification

Associations not probabilities/distance

Hierarchical manifold models not metric spaces

Multimodal not unimodal

Mappings between modalities/layers (hub architecture)

Other cognitive considerations, e.g., parallelism ...
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Maxims of Interaction

Alexandros Potamianos School of ECE, National Technical Univ. of Athens, Greece

Cognitive Multimodal Processing: from Signal to Behavior



Intro Attention Concept Repr. Manifold DSMs Cognitive Maps System 1-2 Fusion Challenges

Cognition and Attention

What grabs our attention?
Salient events

Attention and Perception:
A simple perceptual algorithm
Quickly identify relevant (to survival) information
Bottom-up selectional attention: features extracted via low
level signal processing
Fusion of top-down and bottom-up attention

The attention/saliency relationship is used in multimedia
production
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Low-level visual features (from feng-gui.com)
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Bottom-up saliency estimation

Audio: rhythm, energy, change of frequency content, ...
Images: color, orientation, density, intensity, size, weight ...
Video: motion (direction, velocity), flicker
Such low level features capture about 60-80% of “events”
in each modality
How do we capture the rest?

Multimodality (up to 90%)
Semantics (top-down selectional attention)

High-performing computational algorithms for saliency
estimation
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Video summarization using audio-visual-text saliency

from [G. Evangelopoulos et al. 2013]
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Video summarization using audio-visual-text saliency
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Challenges

1 Extracting mid- and high-level features including
incorporating semantics (scenes, objects, actions)

2 Fusion of features over time and over modalities
3 Computational models for the fusion of the bottom-up

(gestalt-based) and top-down (semantic-based) attentional
mechanisms

4 Applying these multimodal salient models to realistic
human-human (especially) and human-computer
interaction scenarios

5 Identifying the dynamics of attention and constructing joint
(interactional) attention models
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Constructing concept representations

Word are associated with feature vectors
crisp, parsimonious representation of semantics

Distributional semantic models (DSMs)
Semantic information extracted from word frequencies
Estimate co-occurence counts of word pairs or triplets
Estimate statistics of word context vectors

Semantic networks
discovery of new relations via systematic co-variation
robust estimates – smoothing corpus statistics over network
rapid language acquisition
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Example of Lexical Semantic Network

Linked nodes: lexicalized senses and attributes
Informative for semantic similarity computation

Computation of structural properties, e.g., cliques
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Cognitive Considerations

from [Feldman’s book “From molecule to metaphor”]
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Manifold DSMs

Cognitive semantic space is fragmented in domains
Sparse encoding of relations in each domain (manifold)
Low-dimensional subspaces with good geometric
properties

vs non-metric global semantic space

Semantic similarity operation is performed locally in each
subspace
Decision fusion to reach semantic similarity score
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Manifold DSMs

from [Athanasopoulou and Potamianos, COLING 2014]
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Sparse similarity matrices

Correlation w. human ratings on the WS363 word semantic
similarity task
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Effect of dimensionality

Very-low dimension in subspaces gives good or best performance!
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Lexical Acquisition using a semantic model

Learning the semantics of an unseen words from three web snippets!
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Cogntive Maps

from [Patterson, Nestor and Rogers, 2007]
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From Semantics to Behavior

Main idea: map from one representation space (semantics) to
another, e.g., affect

We present a method of expanding an affective lexicon,
using web-based semantic similarity
Assumption: semantic similarity implies affective similarity.
Create a map from a semantic to an affective
representation
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Semantic-Affective Mapping
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Semantic-Affective Models

from [Malandakis et al 2013], extension of [Turney and Littman, 2002]

Assumption: the valence of a word can be expressed as a
linear combination of the valence ratings of seed words
weighted by semantic similarity and trainable weights ai :

v̂(t) = a0 +
N∑

i=1

ai v(wi) d(wi , t), (1)

t : a word or n-gram (token) not in the affective lexicon
w1...wN : seed words
v(.) : valence rating of a word or n-gram
ai : weight assigned to seed wi

d(wi , t) : semantic similarity between word wi and token t
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Given
an initial lexicon of K words
a set of N < K seed words

we can use (1) to create a system of K linear equations with
N + 1 unknown variables:

 1 d(w1,w1)v(w1) · · · d(w1,wN)v(wN)
...

...
...

...
1 d(wK ,w1)v(w1) · · · d(wK ,wN)v(wN)

 ·


a0
a1
...

aN

 =


1

v(w1)
...

v(wK )

 (2)

Solving with Least Mean Squares estimation provides the
weights ai .
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Example, N = 10 seeds

Order wi v(wi) ai v(wi)× ai
1 mutilate -0.8 0.75 -0.60
2 intimate 0.65 3.74 2.43
3 poison -0.76 5.15 -3.91
4 bankrupt -0.75 5.94 -4.46
5 passion 0.76 4.77 3.63
6 misery -0.77 8.05 -6.20
7 joyful 0.81 6.4 5.18
8 optimism 0.49 7.14 3.50
9 loneliness -0.85 3.08 -2.62

10 orgasm 0.83 2.16 1.79
- w0 (offset) 1 0.28 0.28

Alexandros Potamianos School of ECE, National Technical Univ. of Athens, Greece

Cognitive Multimodal Processing: from Signal to Behavior



Intro Attention Concept Repr. Manifold DSMs Cognitive Maps System 1-2 Fusion Challenges

Word Polarity Detection (ANEW)

2-class word classification accuracy (positive vs negative)
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Word Polarity Detection (BAWLR)

2-class word classification accuracy (positive vs negative)
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Cognitive Auto-Encoders
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The Semantics of Emotion (1)

Semantic vs Affective Priming [Iosif and Potamianos, 2015]
From Semantics to Affective Spaces and back
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The Semantics of Emotion (2)

Task: synonymy and antonymy pair detection
Can semantic-affective auto encoders improve our
semantic reprensetations?

Emotion carries important semantic information!
Cognitive autoenconders show great potential in unlocking
this information
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Dual-System Processing: System 1 vs System 2

Using Kahneman’s (and others) formalism:
System 1 (intuition): generates

– impressions, feelings, and inclinations
System 2 (reason): turns System 1 input into

– beliefs, attitudes, and intentions

Associative relations reside in System 1
But where do semantic relations reside?
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Example

Example from vision: system 1 vs system 2
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Proposed semantic similarity two-tier system

Unifies the three approaches
Fuzzy vs explicit semantic relations
Word senses vs words vs concepts
A two tier system

An associative network backbone
Semantic relations defined as operations on network
neighborhoods (cliques)

Consistent with system 1 vs system 2 view
Furthermore we believe that the

underlying network consists of word senses, and
is a low dimensional semi-metric space
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Lexical Network - Semantic Neighborhoods

Lexical Network
Undirected graph G = (N,E)

Vertices N: words in lexicon L
Edges E : word similarities

Semantic Neighborhoods
For word i create subgraph Gi

Select neighbors of i
Compute S(i , j),∀ j ∈ L, i 6= j
Sort j according to S(i , j)
Select |Ni | top-ranked j
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Semantic Neighborhoods: Examples

Word Neighbors
automobile auto, truck, vehicle,

car, engine, bus, . . .
car truck, vehicle, travel,

service, price, industry, . . .
slave slavery, beggar, nationalism,

society, democracy, aristocracy, . . .
journey trip, holiday, culture,

travel, discovery, quest, . . .

Synonymy
Taxonomic: IsA, Meronymy
Associative
Broader semantics/pragmatics
. . .
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Neighborhood-based Similarity Metrics: Mn

[from E. Iosif and A. Potamianos, 2013]

Mn metric: maximum similarity of neighborhoods

Motivated by maximum sense similarity assumption

Neighbors are semantic features denoting senses
Similarity of two closest senses

Select max. similarity: Mn(“forest”, “fruit”) = 0.30
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Performance of web-based similarity metrics

Task: similarity judgment (Miller-Charles dataset)
Evaluation metric: correlation wrt to human ratings

Feature Description Correlation
context AND queries 0.88
context IND queries 0.55
context IND queries: network 0.90

Comparable to structured DSMs, WordNet-based
approaches
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Cognitive Fusion

Types of fusion:
1 Multimodal fusion, i.e., fusion between modality-specific

processing outputs and multimodal outputs
2 Fusion over time, i.e., how stimuli are integrated both within

and across modalities
3 Fusion of top-down (data-driven) and bottom-up (semantic)

processing, or in general fusion between different layers of
cognitive and computational processing

Challenge: go beyond simple algorithms that employ (weighted)
averages of outputs (across time, modalities and processes) and
design algorithms that make often highly non-linear fusion decisions
depending on our cognitive state, behaviors and intentions
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Grand Challenges

1 Annotation of the mid- and high-level behaviors associated with
human-human and human-machine interaction

2 Attention and saliency modeling using mid- and high-level
features (including semantics), as well as fusion model of
top-down and bottom-up attentional mechanisms

3 From signal to semantics: use “big data” to construct distributed,
low-dimensional semantic cognitive representations

4 From semantics to SSP/BSP labels: estimate mapping between
semantics and other cognitive representation layers

5 Design models that are stateful and are able to predict cognitive
biases, nonlinear logic, abrupt state transitions and surprise

6 Design multi-modal fusion algorithms that exhibit nonlinear
behavior and depend on cognitive states, behaviors etc
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Thank you
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