

Outline

- * What is a movie summary?
- * Attention and Saliency
- * Audio, Visual and Text Saliency
- * A bottom-up approach to summarization
- * Examples
- * Credits:
 - TUC team: A. Potamianos, N. Malandrakis, G. Skoumas
 - NTUA team: P. Maragos, G. Evangelopoulos, N. Zlatintsi, K. Rapantzikos

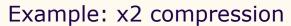
Example (Movie trailer)

www.firstdescentmovie.com

- * Movie trailer (mpeg): 15sec, 30frames/sec
- * Rich in Events:
 - Visual (color, motion, action shots, persons, objects, text)
 - Audio (helicopters, noises, music, speakers, transmissions, effects)

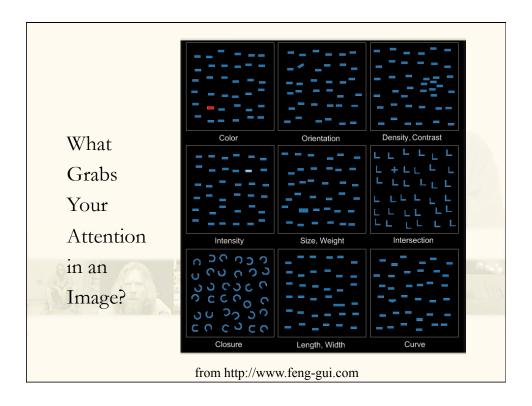
Movie Summarization basics

- * What is a good movie summary
 - Contains all basic plot elements
 - Contains all important (salient) events
 - Above all: it is itself a good movie
- * In essence, a good movie summary should be as informative and enjoyable as the original movie
- * Top-down (semantic) and bottom-up (cognitive/perceptual) approach to movie summarization



Cognition and Attention

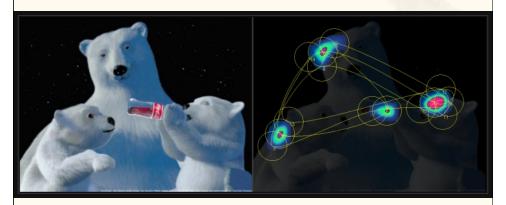
- * What grabs our attention?
 - Salient events
- * Attention and Perception:
 - A **simple** perceptual algorithm
 - Quickly identify relevant (to survival) information
- * Features extracted via low level signal processing
- * The attention/saliency relationship is used in multimedia production



More on Attention and Saliency

- * Similarly for video: low level attention features are motion (direction, velocity), flicker
- * Such low level features capture about 75% of "events" in images
- * How do we capture the rest?
 - Multimodality (redundancy)
 - Semantics of multimedia

Attention Models: Good Example

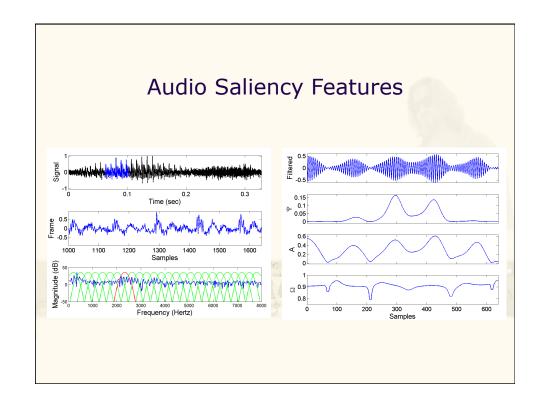


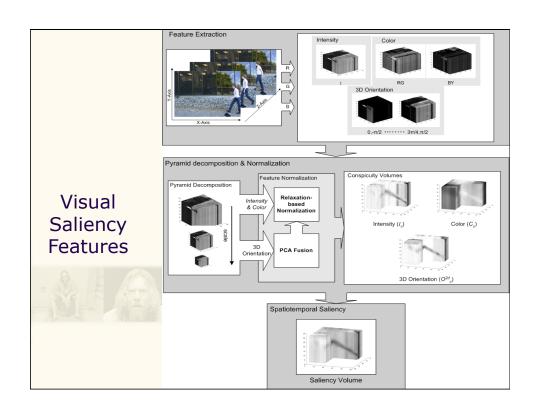
example from http://www.feng-gui.com

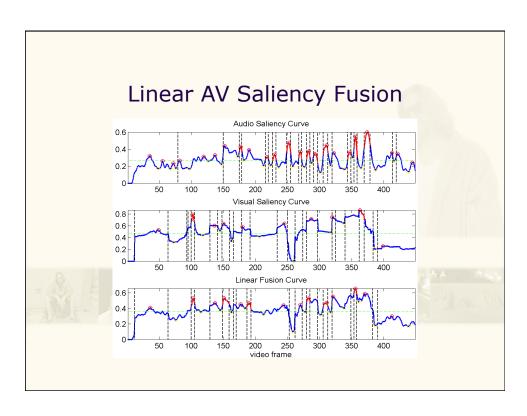
Attention Models: Bad Example

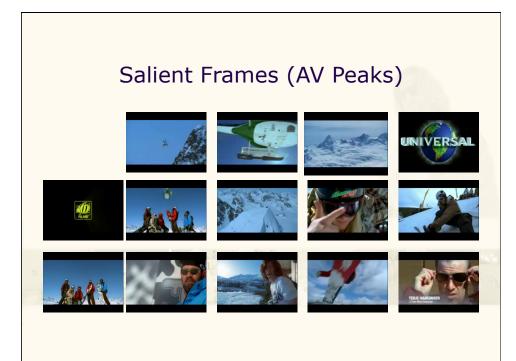
Attention Models and Saliency

- * Attention model of video streams
- * Saliency measures:
 - Aural: energy of multi-frequency band features
 - Visual: multi-scale intensity, color and motion
 - Text: part of speech assignments
- * Fusion on a single audio-visual-text saliency metric









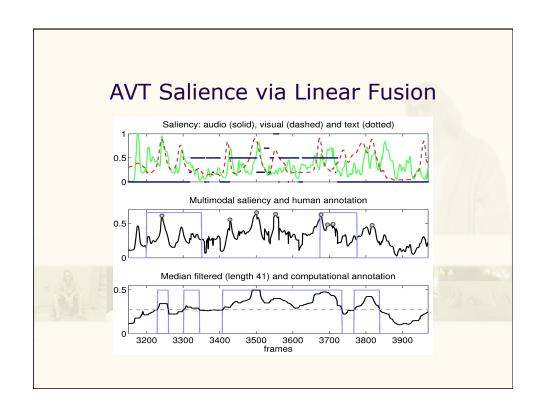
Text Saliency Computation

- * Extract movie transcript from subtitle file
- * Perform part of speech tagging.
- * Align text and audio using a speech recognition system
- * Assign text saliency value to each frame based on the parser POS tags
- * Combine audio, visual and text saliency scores
 - AVT saliency computed at the frame level

POS Saliency Scores

- We consider 6 subclasses and we weight them according
 - Proper Nouns → 1
 - Nouns → 0.7
 - Noun Phrases → 0.5
 - Verbs → 0.5
 - Adjectives → 0.5
 - Stop Words →0.2

	It's NP 0.5		some form NP NP 0.5 0.5		Р	of IN 0.2		Elvish NP 0.5			
	Evi NP 0.5	, /	is VBZ 0.5		stirr VV 0.	G	in IN 0.	V	F	rdor N .0	
His NP 0.5	life NP 0.5	for N 0	000	V	is BZ	N	und P .5	1	to TO 0.2	the DT 0.2	ring NN 0.7
NP 0.5	by NP 0.5	I	ildu: PN 1.0		from IN 0.2	N	he IP	I	and NP 0.5	of IN 0.2	Sauron PN 1.0

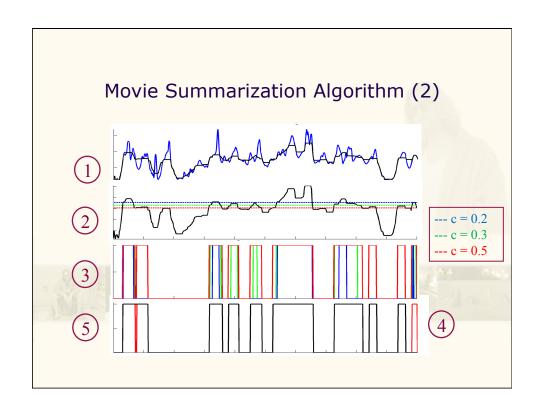


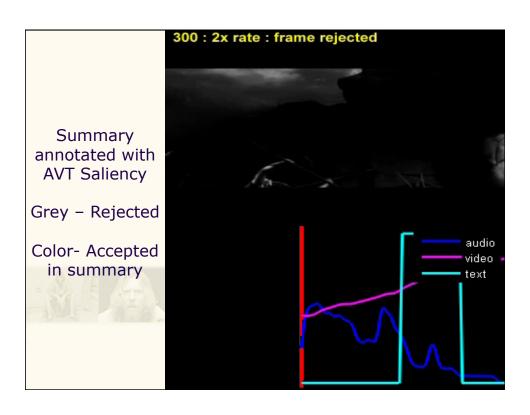
AV Key Frames: 300

Movie Summarization Algorithm

- 1. Filter: AVSC with median of length 2M + 1.
- 2. Threshold choice
- 3. Selection: segments
- 4. Reject: segments shorter than N frames
- 5. Join: segments less than *K* frames apart
- 6. Render: Linear overlap-add on L video frames and audio

Evaluation: M = N = 20, K = L = 10 (videos at 25 fps).





Subjective Evaluation

- 3 clips with duration from 5 to 7 min from the "Lord of the Rings I" (LOTR1), "300" and "Cold Mountain" (CM).
- Skims for c = 0.5, 0.3, 0.2 (x2, x3, x5 real time)
- 11 naive users rated originals & skims w.r.t. included information and aesthetics
- 0-100 scale for informativeness and enjoyability

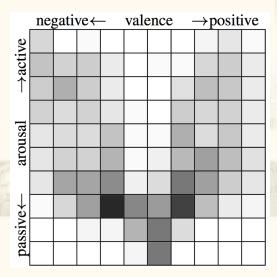
Evaluation: AV vs AVT Summaries

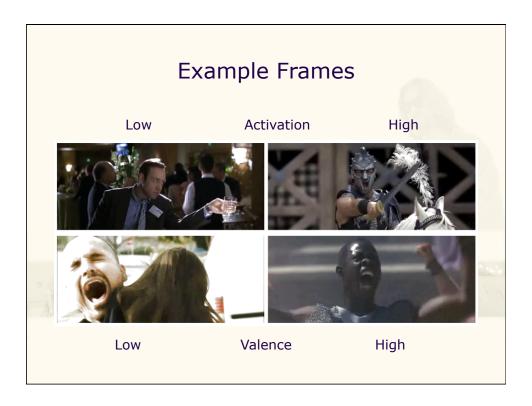
	Multimodal (AVT)			Relative change (AV)					
Video	x2	х3	x5	x2	х3	x5			
	Informativeness								
LOTR1	86.2	76.3	60.7						
300	86.8	77.9	61.4						
CM	78.4	67.1	59.3						
	Enjoyability								
LOTR1	89.0	80.8	71.1						
300	92.4	86.0	68.6						
CM	84.5	76.8	71.8						

Emotion Tracking

- * A continuous 2-D space of emotions
 - Arousal: strength of emotions, related to attention
 - Valence: positive vs. negative emotions
- * Affect and audio
- * Affect and text
- * Visual affect, e.g., emoticons

Affective context of multimedia





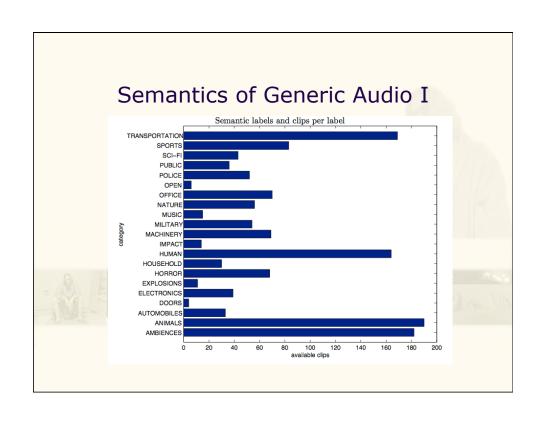
Emotion Tracking

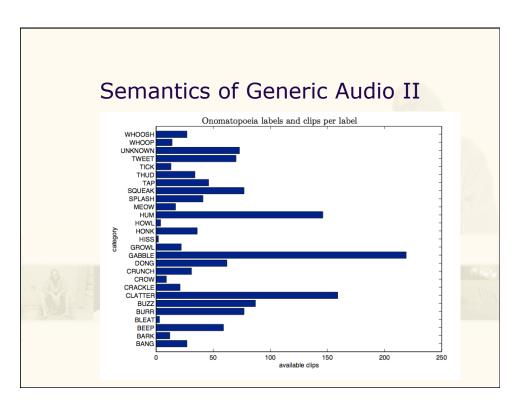
- * Quantization of affective space in 7x7 grid
- * HMM classifiers built separately for arousal & valence
- * Features

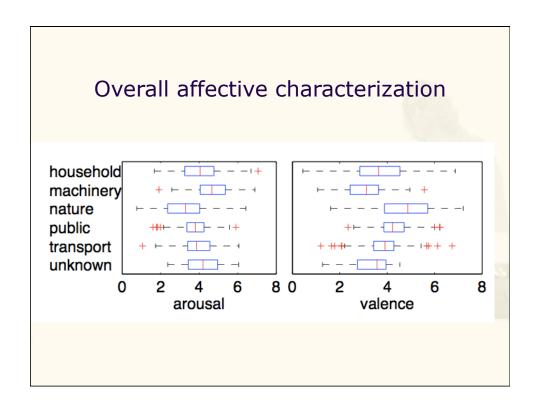
	audio	12 MFCCs and C0, plus derivatives		
Valence	video	maximum color value		
	video	maximum color intensity		
Arousal	audio	12 MFCCs and C0, plus derivatives		

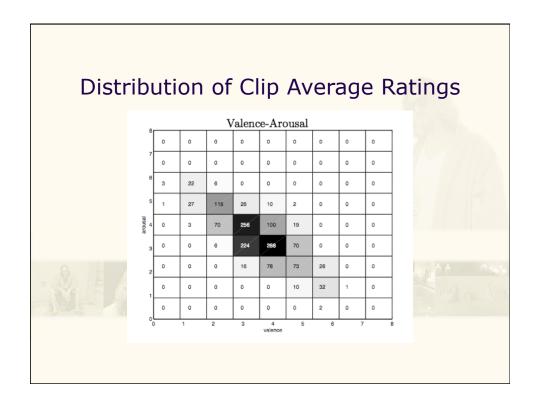
Affective Classification of Generic Audio Clips using Regression Models

N. Malandrakis, S. Sundaram, A. Potamianos
InterSpeech 2013









Inter-annotator agreement

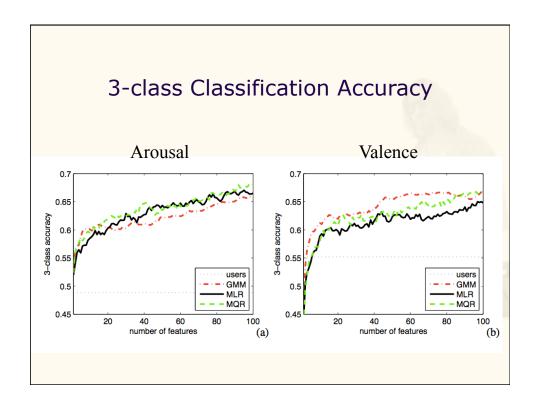
Inter-annotator agreement						
Metric	Arous.	Valen.	Domn.			
avg. pairwise correlation	0.52	0.55	0.16			
avg. pairwise mean abs. dist.	2.02	1.84	2.32			
Krippendorff's alpha (ordinal)	0.39	0.47	0.11			
Krippendorff's alpha (interval)	0.39	0.46	0.10			
Agreement with the ground truth						
Metric	Arous.	Valen.	Domn.			
avg. correlation	0.55	0.60	0.41			
avg. mean abs. dist.	1.42	1.18	1.36			

Frame level vs Long-Term Features

Scope	Low Level. Descr.	Arous.	Valen.	Domn.
frame	chroma $+\Delta$	0.41	0.45	0.43
level	\log Mel power $+\Delta$	0.44	0.48	0.44
	$MFCC + \Delta$	0.45	0.44	0.43
long	chroma $+\Delta$	0.41	0.46	0.42
term	\log Mel power $+\Delta$	0.46	0.49	0.46
	$\mathrm{MFCC} + \Delta$	0.48	0.48	0.45

Feature Selection

Model	# of features	Arous.	Valen.	Domn.
Users	-	0.55	0.60	0.41
	10	0.70	0.67	0.63
MLR	20	0.72	0.70	0.65
Regression	30	0.74	0.71	0.67
Model	40	0.75	0.72	0.68
	50	0.75	0.73	0.69



Conlcusions

- * Bottom-up approach to summarization can produce high-quality summaries
 - Redundancy of attention markers in multimodal streams
 - High production value: the attention-saliency loop
- * Emotion tracking in movies gives good results with low-level audio (mostly) features