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Research Highlights

Affective analysis and classification of
generic audio

Emotion tracking of movies

Salience/Attention models for movie
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Outline

Motivation

Affective Modeling

— Affective Classification of Audio Clips
— Affective Tracking of Movies
Multimedia and Cognition

— Saliency and Attention

— Application to movie summarization
Semantic-Affective Models

— Semantic similarity and DSMs
— Affective text models



List of Open Questions

El How are concepts, features/properties, categories, actions
represented?

F1 How are concepts, properties, categories, actions
combined (compositionally)?

El How are judgements (classification/recognition decisions)
achieved?

I3 How is learning and inference (especially induction)
achieved?

.
Answers should fit evidence by psychology and neurocognition!



Three Solutions

m Symbolic
m cognition is a Turing machine
m computation is symbol manipulation
m rule-based, deterministic (typically)

m Associationism, especially, connectionism (ANNS)
m brain is a neural network

m computation is activation/weight propagation
m example-based, statistical, unstructured (typically)

m Conceptual

m intermediate between symbolic and connectionist

m concepts are represented as well-behaved (sub-)spaces
m computation tools: similarity, operators, transformations
m hierarchical, semi-structured



Properties of the Three Approaches

m Symbolic
m Good for high-level cognitive computations (math)
m Poor generalization power
m Too expensive and slow for most cognitive purposes
m Conceptual
m Excellent generalization power (intuition, physics)
m Good for induction and learning; geometric properties
(hierarchy, low dim., convex) guarantee quick convergence
m Properties and actions defined as operators/translations
m Still too slow for some survival-dependent decisions
m Connectionist (machine learning)
m General-purpose, extremely fast and decently accurate
m Computational sort-cuts create cognitive biases
m Poor generalizability power due to high dimensionality and
lack of crisp semantic representation



Properties of the Three Approaches

Property Symbolic Conceptual Connectionist
cognitive speed very slow slow fast
machine speed very fast  pretty fast fast
cognitive accuracy good good decent
machine accuracy decent good good
dimensionality high low high
representation flat hierarchical  distributed
interpretability excellent good low
determinism high medium low
reasoning (all data) good good decent
compositionality good good decent
induction/learning poor excellent average




Representation Learning

Properties of a classifier with good generalization
properties [Bengio et al 2013]:

— Low-dimensionality/Sparseness

— Distributed representations/hierarchy
* Depth and abstraction

— Shared factors across tasks

Examples: auto-encoders, manifolds, deep neural nets ...

How to induce these properties in your classifiers:

— Include as regularization term in training classifier criterion
— Include properties directly in classifier design

— Go deep and pray (dirty neural net tricks)



Our Goal

Cognitively-motivated semantic models

— Foreground-background classification using attention/
saliency

— Emphasis on induction not classification

— Associations not probabilities/distance

— Mappings between layers

— Hierarchical manifold models not metric spaces
— Multimodal not unimodal



Part I: Affective Modeling of
Multimedia



Affective Classification of Generic Audio
Clips using Regression Models

N. Malandrakis, S. Sundaram, A. Potamianos
InterSpeech 2013



Semantics of Generic Audio |

Semantic labels and clips per label
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Semantics of Generic Audio |l

Onomatopoeia labels and clips per label
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Overall affective characterization

household - - LT3 - -1+ == T }~---1
machinery| - T - - L TF -4 A
nature SR I B - - [T — —
public - —[T- — 1+ e = [T+ — +
transport b= {1 F - FH- = T — 1+ A
unknown - T+ — — T}
0 2 4 6 80 2 4 6
arousal valence




Distribution of All Ratings

Valence-Arousal
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Distribution of Clip Average Ratings

. Valence-Arousal
0 0 Q 0 0 0 0 0 0
7
0 0 0 0 0 0 0 0 0
L
3 22 8 0 0 0 0 0 0
50y 27 26 10 2 0 0 0
3
24 o 3 70 256 100 18 0 0 0
b
4 0 0 8 o2 70 0 0 0
0 0 0 16 78 73 28 0 0
2l
0 0 0 0 0 10 a2 1 0
1
0 0 0 0 0 0 2 0 0
0
0 1 2 3 4 5 8 7 e

valance



arousal
o N A OO @

3D Affective space correlations

dominance
o N A OO O

dominance
o N A OO @

O 2 4 6 8 0O 2 4 6 8 O 2 4 6 8
valence arousal valence



Inter-annotator agreement

Inter-annotator agreement

Metric Arous. | Valen.| Domn.
avg. pairwise correlation 0.52 0.55 0.16
avg. pairwise mean abs. dist. 2.02 1.84 2.32
Krippendorff’s alpha (ordinal) 0.39 0.47 0.11
Krippendorff’s alpha (interval) | 0.39 0.46 0.10
Agreement with the ground truth
Metric Arous. | Valen.| Domn.
avg. correlation 0.55 0.60 0.41
avg. mean abs. dist. 1.42 1.18 1.36




Frame level vs Long-Term Features

Scope | Low Level. Descr. Arous. | Valen. | Domn.
frame | chroma + A 0.41 0.45 043
level | log Mel power + A | 0.44 0.48 0.44
MFECC + A 0.45 0.44 0.43
long chroma + A 0.41 0.46 0.42
term log Mel power + A | 0.46 0.49 0.46
MFECC + A 0.48 0.48 0.45




Feature Selection

Model # of features | Arous. | Valen. | Domn.
Users - 0.55 0.60 0.41
10 0.70 0.67 0.63
MLR 20 0.72 0.70 0.65
Regression 30 0.74 0.71 0.67
Model 40 0.75 0.72 0.68
50 0.75 0.73 0.69




3-class accuracy

3-class Classification Accuracy
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A Supervised Approach to
Movie Emotion Tracking

N. Malandrakis, A. Potamianos, G.

Evangelopoulos, A. Zlatintsi
ICASSP 2011



Example Frames




Arousal vs Valence Labeled Data

negative<— valence —positive

passive<—  arousal = —>active




Features and Models

* Continuous-time modeling using HMM models

* Language model used for smoothing

e Features used:

audio | 12 MFCCs and CO0, plus derivatives
Valence video maximum color value

video maximum color intensity
Arousal audio | 12 MFCCs and CO0, plus derivatives




Results: Frame Confusion Matrix
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Continuous-Time Emotion Tracking
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Affective tracks:
Arousal & Valence

Green— Machine

Blue — Human
Annotators (average)




Discussion

Affective analysis of generic audio using
frame-level features and their statistics

Affect of movies fusing multimodal cues

Hard to draw general conclusions about
feature selection
— No universal features (except MFCCs!?)

A detection-based approach for audio
processing?






Cognition and Attention

 What grabs our attention?
— Salient events

e Attention and Perception:
— A simple perceptual algorithm
— Quickly identify relevant (to survival) information

— Bottom-up selectional attention: features extracted via low
level signal processing

— Fusion of top-down and bottom-up attention

* The attention/saliency relationship is used in
multimedia production



What
Grabs
Your
Attention
In an
Image?

Closure Length, Width

from http://www.feng-gui.com



Attention and Saliency

Audio: rhythm, energy, change of frequency content
Images over time (video): motion (direction,
velocity), flicker

Such low level features capture about 60-80% of
“events” in each modality

How do we capture the rest?

— Multimodality (up to 90%)
— Semantics (top-down selectional attention)



Attention Models: Good Example

example from http://www.feng-gui.com



Attention Models: Bad Example

CUMRAX-COM



Attention Models and Saliency

* Attention model of video streams

* Saliency measures:

- Aural: energy of multi-frequency band features
Visual: multi-scale intensity, color and motion

Text: part of speech assignments

* Tusion on a single audio-visual-text saliency metric



Frame

Audio Saliency Features
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Visual Saliency
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AVT Salience via Linear Fusion
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Example: x2 compression




AV Key Frames: 300




Movie Summarization Algorithm

Filter: AVSC with median of length 2M + 1.
Threshold choice

Selection: segments

Reject: segments shorter than N frames

Join: segments less than K frames apart

Render: Linear overlap-add on L video frames and

audio

oA WN -

Evaluation: M = N =20, K = L = 10 (videos at 25 fps).



Movie Summarization Algorithm (2)
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Summary
annotated with AVT
Saliency

Grey — Rejected

Color- Accepted in
summary

: 2X rate : frame rejected




Discussion

* Low-level selectional attention can be modeled using
o Low level feature detectors
o Fusion of detectors across modalities
o Can capture up to 95% of semantics
* Ongoing work
o Attentional mechanisms in audio beyond energy
o ]Text saliency
o Semantics — Plot Analysis



Part Ill: Semantic Representations



Acknowledgements

m Elias losif, Kelly Zervanou,Maria Giannoudaki: Semantic
similarity computation, semantic networks

m Nikos Malandrakis: Affective models for text and multimedia

m Georgia Athanasopoulou: Metric semantic spaces

m Shri Narayanan (USC): Affective modeling of dialogue interaction

References

[1] E. losif and A. Potamianos. 2010. “Unsupervised semantic similarity computation between terms using web
documents”. IEEE Transactions on Knowledge and Data Engineering.

[2] N. Malandrakis, A. Potamianos, E. losif, S. Narayanan. 2011. “Kernel methods for affective lexicon creation”.
Proc. Interspeech.

[3] — . 2011. “EmotiWord: Affective Lexicon Creation with Application to Interaction and Multimedia Data". Proc. of
MUSCLE workshop.

[4] E. losif and A. Potamianos. 2012. “Semsim: Resources for normalized semantic similarity computation using
lexical networks”. In Proc. LREC.

[5] N. Malandrakis, E. losif, A. Potamianos. 2012. “DeepPurple: Estimating Sentence Semantic Similarity using
N-gram Regression Models and Web Snippets”. In Proc SemEval (collocated with NAACL-HLT).

[6] E. losif and A. Potamianos. 2013. “Similarity computation using semantic networks created from web-harvested
data”. Natural Language Engineering.

[7] N. Malandrakis, A. Potamianos, E. losif and S. Narayanan. 2013. “Distributional Semantic Models for Affective
Text Analysis”. IEEE Transactions on Audio, Speech and Language Processing.



Problem Definition

m Semantic Similarity Computation

m Given a pair of words or terms (w;, ;)

m Compute semantic similarity between them S(/, /)
m Related tasks

m Phrase or sentence level semantic similarity
m Strength of associative relation between words
m Affective score (valence) of words and sentences

m Motivation

m Organizing principle of human cognition
m Building block of machine learning in NLP/semantic web
m Entry point for the semantics of language



System 1 vs System 2

m Using Kahneman’s (and others) formalism:
m System 1 (intuition): generates
— impressions, feelings, and inclinations
m System 2 (reason): turns System 1 input into
— beliefs, attitudes, and intentions

m Associative relations reside in System 1
m But where do semantic relations reside?



m Example from vision: system 1 vs system 2
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Main approaches of lexical semantics

m Word are associated with feature vectors
m crisp, parsimonious representation of semantics

m Distributional semantic models (DSMs)

m Semantic information extracted from word frequencies
m Estimate co-occurence counts of word pairs or triplets
m Estimate statistics of word context vectors

m Semantic networks

m discovery of new relations via systematic co-variation
m robust estimates — smoothing corpus statistics over network
m rapid language acquisition



Example of Semantic Network

m Linked nodes: lexicalized senses and attributes
m Informative for semantic similarity computation

m Computation of structural properties, e.g., cliques




Proposed semantic similarity two-tier system

m Unifies the three approaches
m Fuzzy vs explicit semantic relations

m Word senses vs words vs concepts

m A two tier system

m An associative network backbone
m Semantic relations defined as operations on network
neighborhoods (cliques)

m Consistent with system 1 vs system 2 view

m Furthermore we believe that the

m underlying network consists of word senses, and
m is a low dimensional semi-metric space



Lexical Network - Semantic Neighborhoods

Lexical Network N
m Undirected graph G = (N, E) o T
m Vertices N: words in lexicon L

m Edges E: word similarities Wy Ay
Semantic Neighborhoods t A
m For word / create subgraph G; N,

m Select neighbors of / e
m Compute S(/,)),Vje Li#] s
m Sort j according to S(/. )
m Select | N, | top-ranked |



Semantic Neighborhoods: Examples

Word Neighbors
automobile auto, truck, vehicle,
car, engine, bus, ...
car truck, vehicle, travel,
service, price, industry, ...
slave slavery, beggar, nationalism,
society, democracy, aristocracy, ...
journey trip, holiday, culture,
travel, discovery, quest, ...

B Synonymy

m Taxonomic: IsA, Meronymy

m Associative

m Broader semantics/pragmatics



Semantic Sim. Computation: Sense Similarity

m Maximum sense similarity assumption [Resnik, '95].

m Similarity of words equal to similarity of their closest senses
m If words are considered as sets of word senses, this is the
“common sense” set distance

m Given words wy, w, with senses sy;, Sy;

S(wy, wp) = mg_:ix S(s1i, S2))



Neighborhood-based Similarity Metrics: M,
M, metric: maximum similarity of neighborhoods

forest

m Motivated by maximum sense similarity assumption

m Neighbors are semantic features denoting senses
m Similarity of two closest senses

m Select max. similarity: M,(“forest”, “fruit”) = 0.30



Performance of net-based similarity metrics

m Task: similarity judgment on noun pairs
m Dataset: MC [Miller and Charles, 1998]

m Evaluation metric: Pearson’s correlation wrt to human

ratings
Dataset | Neighbor | Similarity Metrics
selection | computation || M,—100 | Rr—100 | E;-%oo
MC CO-0occur. CO-OCCuUr. 0.90 0.72 0.90
MC COo-0occur. context 0.91 0.28 0.46
MC context CO-OCCuUr. 0.52 0.78 0.56
MC context context 0.51 0.77 0.29




Performance of web-based similarity metrics

m For MC dataset

Feature Description Correlation
context AND queries 0.88
context IND queries 0.55
context | IND queries: network 0.90

m Comparable to structured DSMs, WordNet-based
approaches



Contributions

Proposed a language agnostic, unsupervised and scalable
algorithm for semantic similarity computation

m No linguistic knowledge required, works from text corpus
or using a web query engine

m Shown to perform at least as well as resource-based
semantic similarity computation algorithms, e.g.,
WordNet-based methods



m Affective text labeling at the core of many multimedia
applications, e.g.,
m Sentiment analysis
m Spoken dialogue systems
m Emotion tracking of multimedia content

m Affective lexicon is the main resource used to bootstrap
affective text labeling

m Lexica are currently of limited scope and quality



Goals and Contributions

T
Our goal: assigning continuous high-quality polarity ratings to
any lexical unit

m We present a method of expanding an affective lexicon,
using web-based semantic similarity

m Assumption: semantic similarity implies affective similarity.

m The expanded lexica are accurate and broad in scope,
e.g., they can contain proper nouns, multi-word terms



Our lexicon expansion method

Expansion of [Turney and Littman, '02].

Assumption: the valence of a word can be expressed as a
linear combination of its semantic similarities to a set of seed
words and their valence ratings:

N
V(W) = a0+ ) a v(w) d(w;, w)), (1)

i=1

m w; : the wanted word

m Wi...wy : seed words

m v(w;) : valence rating of word w;

m g; . weight assigned to seed w;

m d(w;, w;) : measure of semantic similarity between words
w; and Wi



Computations are mappings between layers

\ A I
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Given
m an initial lexicon of K words
m aset of N < K seed words

we can use (1) to create a system of K linear equations with
N + 1 unknown variables:

" ap -1

1 d(wy,wy)v(wy) - d(wy, wy)v(wy) a v(w;)

1 d(wewv(w) o dmowvim) 1| o || g

Solving with Least Mean Squares estimation provides the
weights a;.



Example, N = 10 seeds

Order W, viw;)) | a | v(w) x a;
1 mutilate -0.8 | 0.75 -0.60
2 intimate 0.65 | 3.74 2.43
3 poison -0.76 | 5.15 -3.91
4 bankrupt | -0.75 | 5.94 -4.46
3 passion 0.76 | 4.77 3.63
6 misery -0.77 | 8.05 -6.20
7 joyful 0.81 | 6.4 5.18
8 optimism | 0.49 | 7.14 3.50
9 loneliness | -0.85 | 3.08 -2.62
10 orgasm 0.83 | 2.16 1.79
- wy (offset) 1 0.28 0.28




Sentence Tagging

Simple combinations of word ratings:

m linear (average)
N

n(s) = 1 3 v(m)

=1

m weighted average

N
vo(8) = — L > v(wi)? - sign(v(w;))
i; v(w;)| =1

B Mmax

va(s) = max(|v(w;)|) - sign(v(w;)), z=arg ImaX(IV(Wi)I)



N-gram Affective Models

m Generalize method to n-grams
vi(s) = ag + ay vj(unigram) + ao v;(bigram)

m Starting from all 1-grams and 2-grams, select terms:

Kl Backoff: use overlapping bigrams as default, revert to
unigrams based on mutual information-based criterion

F1 Weighted interpolation: use all unigrams and bigrams as
default, reject bigrams based on criterion

® In both cases unigrams and bigrams are given linear
weights, trained using LMS



m ANEW Word Polarity Detection Task

m Affective norms for English words (ANEW) corpus
m 1.034 English words, continuous valence ratings
m General Inquirer Word Polarity Detection
m General Inquirer words corpus
m 3.607 English words, binary valence ratings
m BAWLR Word Polarity Detection Task

m Berlin affective word list reloaded (BAWLR) corpus
m 2.902 German words, continuous valence ratings

m SemEval 2007 Sentence Polarity Detection

m SemEval 2007 News Headlines corpus

m 1.000 English sentences, continuous valence ratings

m ANEW used for lexicon training

m 250 sentence development set used for word fusion training



Word Polarity Detection (ANEW)

2-class word classification accuracy (positive vs negative)
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Word Polarity Detection (BAWLR)

2-class word classification accuracy (positive vs negative)
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Sentence Polarity Detection (SemEval 2007)

2-class sentence classification accuracy (positive vs negative),
vs bigram rejection threshold
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ChIMP Sentence Frustration/Politeness Detection

m ChIMP Children Utterances corpus

m 15.585 English sentences, Politeness/Frustration/Neutral
ratings
m SOA results, binary accuracy Pvs 0/ F vs O:
m 81% /62.7% [Yildirim et al, '05]

m 10-fold cross-validation
m ANEW used for training/seeds to create word ratings

m ChiMP words added to ANEW with weight w, to adapt to
the task

m Similarity metric: Google semantic relatedness
m Only content words taken into account



Politeness: Sentence Fusion scheme
Classification Accuracy | avg | w.avg | max
Baseline: P vs O 0.70 | 0.69 | 0.54

Adapt w=1:Pvs O 0.74 | 0.70 | 0.67
Adapt w =2: Pvs O 0.77 | 0.74 | 0.71
Adapt w =00: PvsO | 0.84 | 0.82 | 0.75

Frustration: Sentence Fusion scheme
Classification Accuracy | avg | w.avg | max
Baseline: Fvs O 0.53 | 0.62 | 0.66

Adaptw=1:FvsO | 051 | 0.58 | 0.57
Adaptw =2: FvsO | 049 | 0.53 | 0.53
Adaptw =oco: FvsO | 052 | 052 | 0.52




Summary of Results

m The word-level ratings are very accurate and robust across
different corpora

m N-gram sentence-level ratings significantly better than the
state-of-the-art, despite the simplistic sentence level fusion
model and disregard of syntax/negations

m Adaptation provided good performance on the politeness
detection task (linear fusion)

m The baseline model performed best on the frustration
detection task (max fusion)



]
Proposed a high-performing, robust, general-purpose and
scalable algorithm for affective lexicon creation

m Investigated linear and non-linear sentence level fusion
schemes, showing good but task-dependent performance

m Investigated domain adaptation with good but
task-dependent performance (politeness vs frustration
detection task)

m Demonstrated that distributional approach can generalize
to n-grams



Conclusions



Score Card

Cognitively-motivated semantic models

— Foreground-background classification using attention/
saliency

— Emphasis on induction not classification

— Associations not probabilities/distance

— Mappings between layers

— Hierarchical manifold models not metric spaces
— Multimodal not unimodal



Acquisition of lexical semantics
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— Co-0occurrence-based metric
— Network-based metric
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Grand Challenge



Representation Models for Multimedia

e Similarity is the main building block

— 3 types: similarity w. internal semantic representation, self-similarity over
time, similarity in context (biases by world/internal view)

— Associative network is layer 1 — all computations use this basic representation
e Detectors live in low-dimensional spaces with good geometric
properties (“metric”)
 Features are labels, labels are features

* Features/labels are organized hierarchically (multiple layers
from specific to general, i.e., abstraction)



Descriptions of Sounds
[slide by Shiva Sundaram]
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Descriptions of Sounds
[original slide by Shiva Sundaram]
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Our Timeline

Unexpectedly good results on semantic similarity tasks using web data

[E. losif, and A. Potamianos, "Unsupervised Semantic Similarity Computation Between Terms Using Web
Documents," IEEE Transactions on Knowledge and Data Engineering, Nov. 2010]

— Lucky enough to: 1) work on a semantic similarity task,
2) directly modeling human cognition

Goal: reduce web query complexity from quadratic to linear

[E. losif, and A. Potamianos, "Similarity Computation Using Semantic Networks Created From Web-Harvested
Data", Natural Language Engineering, 2013]

— Lucky enough not to stop at good initial performance

Realization:
— generalization power is in the semantic representation/network
— multi-tier models: associative network is the 15t tier

Cognitive science literature [P. Gardenfors, Conceptual Spaces, 2000]
— Low-dimensional “metric” sub-spaces (good geometric properties)
— Maps and operators defined in this space

Combine experience from machine learning to come up with a general
model



